Structural, optical, and electrical properties of the Si10Ge10AsxTe80-x amorphous system
Keywords:
Multilayers system, optical band gap, activation energies, electrical conductivity, photoluminescenceAbstract
The thin films of the system Si10Ge10AsxTe80-x (where x = 5 and 15) prepared at 80°C were studied in the temperature ranges of 200, 300, and 400oC. The two multilayers of thin films consist of silicon (Si), germanium (Ge), and tellurium (Te) doped with arsenic (As). Annealing temperature was varied to investigate its effect on the structural and electrical properties of the films. The crystalline structure and the influence of annealing on the structure were investigated by X-ray diffraction. The X-ray data of films annealed at 400°C illustrated some crystallizing Ge-Ge phases. The optical band gap decreasing of arsenic-doped films was found. It has been shown that with increasing arsenic content in the films, their conductivity also increases. The optical measurements showed that the optical energy gap Eg decreases and/or increases upon annealing, while the increase is partially due to crystallization effects. Regarding the electrical measurements, they were carried out at different annealed temperatures and annealing times. The results showed that band gap energy decreases from 2.49 to 1.22 eV with respect to the rise of As content. Moreover, the incorporation of arsenic leads to a decrease in the activation energies of crystallization and an increase in the conductivity. The activation energies of crystallization of the As-(15nm) and As-(45nm)-doped systems Si10Ge10AsxTe80-x are 16.9 and 11.5 kJ/mol, respectively.
References
References
Ghazala, M. S. A., Aboelhasn, E., Amar, A. H., & Gamel, W. (2011). Thermal stability and electrical properties of Se90Ge10-xInx amorphous alloys. Physica Status Solidi. C, Conferences and Critical Reviews/Physica Status Solidi. C, Current Topics in Solid State Physics, 8(11–12), 3095–3098. https://doi.org/10.1002/pssc.201000562.
Popescu, M., Sava, F., Velea, A., & Lőrinczi, A. (2009). Crystalline–amorphous and amorphous–amorphous transitions in phase-change materials. Journal of Non-Crystalline Solids, 355(37–42), 1820–1823. https://doi.org/10.1016/j.jnoncrysol.2009.04.053.
Ovshinsky, S. R. (1968). Reversible Electrical Switching Phenomena in Disordered Structures. Physical Review Letters, 21(20), 1450–1453. https://doi.org/10.1103/physrevlett.21.1450.
Lacaita, A. (2006). Phase change memories: State-of-the-art, challenges and perspectives. Solid-State Electronics, 50(1), 24–31. https://doi.org/10.1016/j.sse.2005.10.046.
Lok Chow, Thermoelectric Power and DC Conductivity of Amorphous Ge10Si12As30Te48 Semiconductors, University of Manitoba, 1976.
Garbin, D., Devulder, W., Degraeve, R., Donadio, G. L., Clima, S., Opsomer, K., Fantini, A., Cellier, D., Kim, W. G., Pakala, M., Cockburn, A., Detavernier, C., Delhougne, R., Goux, L., & Kar, G. S. (2019). Composition Optimization and Device Understanding of Si-Ge-As-Te Ovonic Threshold Switch Selector with Excellent Endurance. 2021 IEEE International Electron Devices Meeting (IEDM). https://doi.org/10.1109/iedm19573.2019.8993547.
Bhumia, S., Bhattacharya, P., & Bose, D. (1996). Pulsed laser deposition of ZnTe thin films. Materials Letters, 27(6), 307–311. https://doi.org/10.1016/0167-577x(96)00009-2
Ibrahim, A. (2006). DC electrical conduction of zinc telluride thin films. Vacuum, 81(4), 527–530. https://doi.org/10.1016/j.vacuum.2006.07.012
Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., & Brus, L. E. (1996). Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383(6603), 802–804. https://doi.org/10.1038/383802a0
McDonald, S. A., Konstantatos, G., Zhang, S., Cyr, P. W., Klem, E. J. D., Levina, L., & Sargent, E. H. (2005). Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 4(2), 138–142. https://doi.org/10.1038/nmat1299
Nozik, A. (2002). Quantum dot solar cells. Physica E Low-dimensional Systems and Nanostructures, 14(1–2), 115–120. https://doi.org/10.1016/s1386-9477(02)00374-0.
Nakamura, Y. (2018). Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. Science and Technology of Advanced Materials, 19(1), 31–43. https://doi.org/10.1080/14686996.2017.1413918.
Das, S., Senapati, S., Alagarasan, D., Varadharajaperumal, S., Ganesan, R., & Naik, R. (2022). Enhancement of nonlinear optical parameters upon phase transition in new quaternary Ge20Ag10Te10Se60 films by annealing at various temperatures for optoelectronic applications. Journal of Alloys and Compounds, 927, 167000. https://doi.org/10.1016/j.jallcom.2022.167000.
Wang, B., Fu, X., Song, S., Chu, H., Gibson, D., Li, C., Shi, Y., & Wu, Z. (2018). Simulation and optimization of film thickness uniformity in physical vapor deposition. Coatings, 8(9), 325. https://doi.org/10.3390/coatings8090325.
Tauc, J. (1974). Amorphous and Liquid Semiconductors. In Springer eBooks. https://doi.org/10.1007/978-1-4615-8705-7.
Tillack, B., Zaumseil, P., Morgenstern, G., Krüger, D., Dietrich, B., & Ritter, G. (1995). Strain compensation in ternary Si1-x- yGexBy films. Journal of Crystal Growth, 157(1–4), 181–184. https://doi.org/10.1016/0022-0248(95)00405-x
Urbach, F. (1953). The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physical Review, 92(5), 1324. https://doi.org/10.1103/physrev.92.1324.
Amanullah, F. M., Al‐Shammari, A. S., & Al‐Dhafiri, A. M. (2005). Co‐activation effect of chlorine on the physical properties of CdS thin films prepared by CBD technique for photovoltaic applications. Physica Status Solidi (A), 202(13), 2474–2478. https://doi.org/10.1002/pssa.200420075.
Abo‐Ghazala, M. S. (2011). Effect of H‐dilution and hydrogen bonding configuration on optical and electronic properties of a‐Si:H/a‐Ge:H multilayers. Physica Status Solidi. C, Conferences and Critical Reviews/Physica Status Solidi. C, Current Topics in Solid State Physics, 8(11–12), 3099–3102. https://doi.org/10.1002/pssc.201000561.
Khelifati, N., Tata, S., Rahal, A., Cherfi, R., Fedala, A., Kechouane, M., & Mohammed‐Brahim, T. (2010). The annealing temperature effect on the electrical properties of boron‐doped hydrogenated amorphous silicon a‐Si:H(B). Physica Status Solidi. C, Conferences and Critical Reviews/Physica Status Solidi. C, Current Topics in Solid State Physics, 7(3–4), 679–682. https://doi.org/10.1002/pssc.200982718.
Augis, J. A., & Bennett, J. E. (1978). Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. Journal of Thermal Analysis, 13(2), 283–292. https://doi.org/10.1007/bf01912301.
Rao, C. N. R., & Rao, J. N. K. (1978). Phase transitions in solids : an approach to the study of the chemistry and physics of solids. In McGraw-Hill eBooks. https://ci.nii.ac.jp/ncid/BA09886264.
El-Zaidia, M.M. and Nassar, A.M., 1981. Amorphous-crystalline transformation and X-ray studies of Se80Te18S2. Physics and Chemistry of Glasses, 22, pp.147-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tarek M. Fayez، Ibrahim A. Saleh

This work is licensed under a Creative Commons Attribution 4.0 International License.