STABILITY OF FUZZY LOTKA -VOLTIRA MODEL USING LIAPUNOV FUNCTION

Authors

  • ALMBROK HUSSIN ALSONOSI OMAR Department of Mathematics Faculty of Sciences, Sebha University
  • IMAN AISSA ALGANAY AHMED Department of Mathematics Faculty of Sciences, Sebha University

Abstract

the Liapunov function is one of the method that using to test the
stability of the solutions of the differential equations. In this paper
we will use this approach to study the stability of the solution of
the uncertainty population models. Lotka-Voltirra model with
fuzzy initial conditions has chosen to explore the uncertainty in
population models. The fuzzy and deterministic stages of the
model will be compared and numerical example will be provided. 

References

Akın, Ö., & Oruç, Ö. (2012). A prey predator model with fuzzy initial

values. Hacettepe Journal of Mathematics and Statistics, 41(3).

Alsonosi Omar, A., & Abu Hasan, Y. (2012). Numerical solution of fuzzy

differential equations and the dependency problem. Applied

Mathematics and Computation, 219(3), 1263-1272.

da Silva Peixoto, M., de Barros, L. C., & Bassanezi, R. C. (2008).

Predator-prey fuzzy model. Ecological Modelling, 214(1), 39-44.

Gonzaléz, G., Jódar, L., Villanueva, R., & Santonja, F. (2008). Random

modeling of population dynamics with uncertainty. WSEAS

TRANSACTIONS on BIOLOGY and MEDICINE, 5(2), 34-45.

Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with

deterministic differential equations and random initial conditions.

Mathematical Biosciences, 195(2), 179-193.

Murray, J. D. (2002). Mathematical biology (Vol. 2): Springer.

Normah Maan, K. B., Nor’aini Aris. (2013). Fuzzy Delay Differential

Equation in Predator-Prey

Interaction: Analysis on Stability of Steady State. Proceedings of the

World Congress on Engineering (WCE). 1, 37-41.

Omar, A. H. A., & Abu-Hasan, Y. (2010). Uncertainty in the Initial

Population of a Predator-Prey Model. In Proceedings of 2nd

International Conference on Mathematical Sciences, 606-613.

Omar, A. H. A., & Abu-Hasan, Y. (2011). The Interaction of Predator

Prey with Uncertain Initial Population Sizes Journal of Quality

Measurement and Analysis (JQMA), 7(2), 75-83.

Journal of Academic Research

Issue 6

STABILITY OF FUZZY LOTKA -VOLTIRA MODEL

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

ــــــــــــــــــــــــــــــــــــــــ

ــــــ

ــــــــــــــــــــــــــ

Omar, A. H. A., & Abu-Hasan, Y. (2012). Numerical Simulations of the

SIR Epidemic Model with Random Initial States. International

Conference on Computer Engineering & Mathematical Sciences.

Omar, A. H. A., Ahmed, I. A. A., & Hasan, Y. A. (2015). The Fuzzy

Ratio Prey-Predator Model. International Journal of Computer

Science and Electronics Engineering (IJCSEE), 1( 2320–4028), 3.

Omar, A. H. A., & Hasan, Y. A. (2013). Numerical simulations of an SIR

epidemic model with random initial states. SCIENCEASIA, 39,

-47.

Peixoto, M. S., Barros, L. C., Bassanezi, R. C., & Fernandes, O. A.

(2015). An approach via fuzzy sets theory for the dynamics of the

soybean aphid and its predator.

with

Pollett, P. K., Dooley, A. H., & Ross, J. V. (2010). Modelling population

processes

random initial conditions. Mathematical

Biosciences, 223(2), 142-150. doi: 10.1016/j.mbs.2009.11.008

Soong, T. (1973). Random differential equations in science and

engineering: Academic Press.

Tu, P. N. V., & Wilman, E. A. (1992). A generalized predator- prey

model: Uncertainty and management. Journal of Environmental

Economics and Management, 23(2), 123-138.

Xu, C., & Gertner, G. Z. (2009). Uncertainty analysis of transient

population dynamics. Ecological Modelling, 220(3), 283-293.

Published

2016-06-30

How to Cite

HUSSIN ALSONOSI OMAR, A., & AISSA ALGANAY AHME, I. (2016). STABILITY OF FUZZY LOTKA -VOLTIRA MODEL USING LIAPUNOV FUNCTION. Journal of Academic Research, 6, 601–616. Retrieved from https://lam-journal.ly/index.php/jar/article/view/1205

Issue

Section

Article