STABILITY OF FUZZY LOTKA -VOLTIRA MODEL USING LIAPUNOV FUNCTION
الملخص
the Liapunov function is one of the method that using to test the
stability of the solutions of the differential equations. In this paper
we will use this approach to study the stability of the solution of
the uncertainty population models. Lotka-Voltirra model with
fuzzy initial conditions has chosen to explore the uncertainty in
population models. The fuzzy and deterministic stages of the
model will be compared and numerical example will be provided.
المراجع
Akın, Ö., & Oruç, Ö. (2012). A prey predator model with fuzzy initial
values. Hacettepe Journal of Mathematics and Statistics, 41(3).
Alsonosi Omar, A., & Abu Hasan, Y. (2012). Numerical solution of fuzzy
differential equations and the dependency problem. Applied
Mathematics and Computation, 219(3), 1263-1272.
da Silva Peixoto, M., de Barros, L. C., & Bassanezi, R. C. (2008).
Predator-prey fuzzy model. Ecological Modelling, 214(1), 39-44.
Gonzaléz, G., Jódar, L., Villanueva, R., & Santonja, F. (2008). Random
modeling of population dynamics with uncertainty. WSEAS
TRANSACTIONS on BIOLOGY and MEDICINE, 5(2), 34-45.
Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with
deterministic differential equations and random initial conditions.
Mathematical Biosciences, 195(2), 179-193.
Murray, J. D. (2002). Mathematical biology (Vol. 2): Springer.
Normah Maan, K. B., Nor’aini Aris. (2013). Fuzzy Delay Differential
Equation in Predator-Prey
Interaction: Analysis on Stability of Steady State. Proceedings of the
World Congress on Engineering (WCE). 1, 37-41.
Omar, A. H. A., & Abu-Hasan, Y. (2010). Uncertainty in the Initial
Population of a Predator-Prey Model. In Proceedings of 2nd
International Conference on Mathematical Sciences, 606-613.
Omar, A. H. A., & Abu-Hasan, Y. (2011). The Interaction of Predator
Prey with Uncertain Initial Population Sizes Journal of Quality
Measurement and Analysis (JQMA), 7(2), 75-83.
Journal of Academic Research
Issue 6
STABILITY OF FUZZY LOTKA -VOLTIRA MODEL
ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
ــــــــــــــــــــــــــــــــــــــــ
ــــــ
ــــــــــــــــــــــــــ
Omar, A. H. A., & Abu-Hasan, Y. (2012). Numerical Simulations of the
SIR Epidemic Model with Random Initial States. International
Conference on Computer Engineering & Mathematical Sciences.
Omar, A. H. A., Ahmed, I. A. A., & Hasan, Y. A. (2015). The Fuzzy
Ratio Prey-Predator Model. International Journal of Computer
Science and Electronics Engineering (IJCSEE), 1( 2320–4028), 3.
Omar, A. H. A., & Hasan, Y. A. (2013). Numerical simulations of an SIR
epidemic model with random initial states. SCIENCEASIA, 39,
-47.
Peixoto, M. S., Barros, L. C., Bassanezi, R. C., & Fernandes, O. A.
(2015). An approach via fuzzy sets theory for the dynamics of the
soybean aphid and its predator.
with
Pollett, P. K., Dooley, A. H., & Ross, J. V. (2010). Modelling population
processes
random initial conditions. Mathematical
Biosciences, 223(2), 142-150. doi: 10.1016/j.mbs.2009.11.008
Soong, T. (1973). Random differential equations in science and
engineering: Academic Press.
Tu, P. N. V., & Wilman, E. A. (1992). A generalized predator- prey
model: Uncertainty and management. Journal of Environmental
Economics and Management, 23(2), 123-138.
Xu, C., & Gertner, G. Z. (2009). Uncertainty analysis of transient
population dynamics. Ecological Modelling, 220(3), 283-293.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2016 ALMBROK HUSSIN ALSONOSI OMAR، IMAN AISSA ALGANAY AHME

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.