Antioxidation activity and organic components analysis of Cestus Parviflorus grown in Libya

Authors

  • Zaid M. Najah Chemistry Department, Science Faculty, Elmergib University, Alkoms, Libya
  • Najla A. Algaw Chemistry Department, Science Faculty, Elmergib University, Alkoms, Libya

Keywords:

Cestus Parviflorus, GC analysis, Fatty acid esters, Bioactive compounds

Abstract

Phytochemical screening of Cestus Parviflorus plant ethanolic extract was carried out revealing presence of most bioactive phytochemicals, including alkaloids, carbohydrates, glycosides, saponins, phytosterols, phenols, tannins, flavonoids, proteins, terpenes and quinones. For more depth analysis, GC-MS analysis was performed. Wide diverse of chemical classes was found in the ethanolic extract of the plant, long chain hydrocarbons, different types of terpenes, flavonoids, nitrogen and oxygen contained heterocyclic compounds and fatty acids and their esters. Five fatty acids were the most abundant in the ethanolic extract with 11.72% peak area, the acids are; Oleic acid (Z)-9-Octadecenoic acid), trans-13-Octadecenoic acid, cis-13-Octadecenoic acid and cis-Vaccenic acid. Anti oxidation activity of the plant powder also investigated, IC50 value of C. parviflorus plant was 3.95 μg/ml, lower than standard reagent ascorbic acid with 13.49 μg/ml and indicates that, C. Parviflorus is a strong and promising natural antioxidation agent.

References

(1) D. Papaefthimiou, A. Papanikolaou, V. Falara, S. Kostas, et al., “Genus Cistus: a model for exploring labdane-type diterpenes' biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties,” Frontiers in chemistry, vol. 2, pp. 35 -50, 2014.

(2) F. J. Alvarez-Martinez, F. Borrás-Rocher, V. Micol, and E. Barrajon-Catalan, “Artificial intelligence applied to improve scientific reviews: The antibacterial activity of Cistus plants as proof of concept,” Antibiotics, vol. 12, no. 2, pp. 327-359, 2023.

(3) I. Zalegh, M. Akssira, M. Bourhia, F. Mellouki, et al., “A review on Cistus sp.: phytochemical and antimicrobial activities,” Plants, vol. 10, no. 6, pp. 1214-1245, 2021.

(4) X. Fang, R. Wang, S. Sun, X. Liu, et al., “Chemical constituents from the leaves of Cistus parviflorus,” Journal of Chinese Pharmaceutical Sciences, vol. 27, no. 1, pp. 40-50, 2018.

(5) D. Angelopoulou, C. Demetzos, and D. Perdetzoglou, “An interpopulation study of the essential oils of Cistus parviflorus L. growing in Crete (Greece),” Biochemical systematics and ecology, vol. 29, no. 4, pp. 405-415, 2001.

(6) P. M. Dey, and J. B. Harborne, Methods in plant biochemistry: Plant phenolics, London, UK, Academic Press Ltd., 1989, ch. 1, pp. 552-559.

(7) N. Liang, and D. Kitts, “Antioxidant property of coffee components: assessment of methods that define mechanisms of action,” Molecules, vol. 19, no. 11, 19180-19208, 2014

(8) K. R. Asha, S. Priyanga, S. Hemmalakshmi, and K. Devaki, “GC-MS analysis of the ethanolic extract of the whole plant Drosera indica L.,” International Journal of Pharmacognocy and Phytochemical Research, vol. 9, no. 5, pp. 685-688, 2017.

(9) N. S. Rajurkar, and K. Gaikwad, “Evaluation of phytochemicals, antioxidant activity and elemental content of Adiantum capillus veneris leaves,” Journal of chemical and pharmaceutical research, vol. 4, no. 1, pp. 365-374, 2012.

(10) D. Sadava, D. M. Hillis, H. C. Heller, and M. R. Berenbaum, Life: The Science of Biology, 9th ed., USA, Sinauer Associates, Inc., 2011.

(11) P. B. Ayoola, and A. Adeyeye, “Phytochemical and nutrient evaluation of Carica papaya (pawpaw) leaves,” Int. J. Rec. Res. Appl. Stud. (ijrras,), vol. 5, no. 3, pp. 325-328, 2010.

(12) A. Canini, D. Alesiani, G. D’Arcangelo, and P. Tagliatesta, “Gas chromatography–mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf,” Journal of food composition and analysis, vol. 20, no. 7, pp. 584-590, 2007.

(13) F. Mumtaz, S. M. Raza, Z. Ahmad, A. Iftikhar, et. al., “Qualitative phytochemical analysis of some selected medicinal plants occurring in local area of Faisalabad, Pakistan,” Journal of Pharmacy and Alternative Medicine, vol. 3, no. 3, pp. 5-10, 2014.

(14) S. G. Alsabri, A. E. Zetrini, N. B. Ermeli, S. B. Mohamed, et. al., “Study of eight medicinal plants for antioxidant activities,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 8, pp. 4028-403, 2012.

(15) M. Alshamsi, A. Alnuaimi, R. Alshamsi, A. Senthilkumar, et al., “Phytochemical analysis and antioxidant activity of Haloxylon salicarnicum, Ochradenus arabicus and Tamarix nilotica,” J. Phytol, vol. 11, pp. 47-50, 2019.

(16) A. Akbari, G. Jelodar, S. Nazifi, and J. Sajedianfard, “An Overview of the Characteristics and Function of Vitamin C in Various Tissues: Relying on its Antioxidant Function,” Zahedan J. Res. Med. Sci., vol. 18, no. 11, pp. e4037, 2016.

(17) E. Kalpoutzakis, T. Chatzimitakos, V. Athanasiadis, S. Mitakou, et al., “Determination of the Total Phenolics Content and Antioxidant Activity of Extracts from Parts of Plants from the Greek Island of Crete,” Plants, vol. 12, no. 5, pp.1092-1107, 2023.

(18) Y. Inan, S. Akyuz, I. Kurt-Celep, E. Celep, et al., “Influence of in vitro human digestion simulation on the phenolics contents and biological activities of the aqueous extracts from turkish cistus species,” Molecules, vol. 26, no. 17, pp. 5322-5338, 2021.

(19) D. P. Speert, L. W. Wannamaker, E. D. Gray, and C. C. Clawson, “Bactericidal effect of oleic acid on group A streptococci: mechanism of action,” Infection and immunity, vol. 26, no. 3, pp. 1202-1210, 1979.

(20) O. I. Awonyemi, M. S. Abegunde, and T. E Olabiran, “Analysis of bioactive compounds from Raphia taedigera using gas chromatography-mass spectrometry,” Eur. Chem. Commun., vol. 2, no. 8, pp. 933-944, 2020.

(21) K. Hamazaki, N. Suzuki, K. Kitamura, A. Hattori, et al., “Is vaccenic acid (18: 1t n-7) associated with an increased incidence of hip fracture, An explanation for the calcium paradox,” Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 109, no. 8-12, 2016.

(22) C. Lans, and T. Van Asseldonk, “Dr. Duke’s phytochemical and ethnobotanical databases, a cornerstone in the validation of ethnoveterinary medicinal plants, as demonstrated by data on pets in British Columbia,” Medicinal and aromatic plants of North America, 2020, pp. 219-246.

(23) A. Sunita, K. Ganesh, and M. Sonam, “Screening and evaluation of bioactive components of Cenchrus ciliaris L. by GC-MS analysis,” Int. Res. J. Pharm., vol. 8, no. 6, pp. 69-76, 2017.

(24) L. A. Lima, S. Johann, P. S. Cisalpino, L. P. Pimenta, et al., “In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A. St. Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis.,” Rev. Soc. Bras. Med. Trop., vol. 44, no. 6, pp.777-780, 2011.

(25) Y. J. Shen, Y. C. Shen, W. S. Lee, and K. T. Yang, “Methyl palmitate protects heart against ischemia/reperfusion-induced injury through G-protein coupled receptor 40-mediated activation of the PI3K/AKT pathway,” European Journal of Pharmacology, vol. 905, pp.174183-174185, 2021.

(26) U. O. Igwe and U. F. Okwunodulu, JCPS, vol. 2, no. 1, 554-560, 2014.

(27) B. Ghazala, M. Shameel, M. Choudhary, S. Shahzad, et al., “ Phytochemistry and bioactivity of Tetraspora (Volvocophyta) from Sindh,” Pakistan Journal of Botany, vol. 36, no. 3, 531-548, 2004.

(28) S. F. Asghar, H. U. Habib-ur-Rehman, M. I. Choudahry, and A. U. Atta-ur-Rahman, “Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bio-assays of crude extract of Iris germanica,” Inter. J. Genetics Molecular Biol, vol. 3, pp. 95-100, 2012.

(29) www.biosynth.com/p/FN31611/2876-78-0-1-(13.09.2024).

(30) C. Chandekar, and M. Madhugiri, “Antimicrobial potential of leaves of Psidium guajava,” The Bioscan, vol. 6, no. 4, pp. 557-561, 2011.

(31) R. Kafi, H. S. Kwak and W. E Schumacher, “Improvement of Naturally Aged Skin with Vitamin A (Retinol),” Arch. Dermatol., vol. 143, no. 5, pp. 606-612, 2007.

(32) G. G. Belz, K. Breithaupt-Grögler, and Osowski U, “Treatment of congestive heart failure--current status of use of digitoxin," European Journal of Clinical Investigation, vol. 31, no. (Suppl. 2), pp. 10-7, 2001.

(33) A. Zangara, “The psychopharmacology of huperzine A: an alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer's disease,” Pharmacology, Biochemistry, and Behavior, vol. 75, no. 3, pp. 675–686, 2003.

(34) R. Krishnan, K. V. Kannan, and K. Murugan, “Antifungal activity of the ethanolic extracts of Marchantia linearis Lehm. and Lindenb. against some pathogenic fungi,” J. Aquatic Biol. & Fisheries, vol. 2, pp. 556-563, 2014.

(35) A. M. Altinoz, and A. Ozpinar, “PPAR-δ and erucic acid in multiple sclerosis and Alzheimer's Disease. Likely benefits in terms of immunity and metabolism,” International Immunopharmacology, vol. 69, pp. 245-256, 2019.

(36) Duke, U.S. Department of Agriculture, Agricultural Research Service [Online]. Available: http://phytochem.nal.usda.gov, 1992-1996, (13.09.2024).

(37) M. S. Abdelhamid, E. I. Kondratenko, and N. A. Lomteva, “GC-MS analysis of phyto-components in the ethanolic extract of Nelumbo nucifera seeds from Russia,” J. App. Pharm. Sci., vol. 5, no. 4, pp. 115-118, 2015.

(38) G. Bringmann, and F. Pokorny, “The naphthylisoquinoline alkaloids. In The alkaloids: chemistry and pharmacology, New York, Academic Press, 1995, vol. 46, pp. 127-271.

(39) G. Bringmann, and L. Kinzinger, “(+)-Ancistrocline, a naphthylisoquinoline alkaloid from Ancistrocladus tectorius,” Phytochemistry, vol. 31, no. 9, pp. 3297-3299, 1992.

(40) A. K. Karn, R. Dharmatti, M. Sharon, M. Sharon, et al., “Cytotoxicity and anti-cancer activity of ancistrocline: a naphthyl iso-quinoline alkaloid extracted from the stem of Ancistrocladus heyneanus,” Der Chemica Sinica, vol. 6, no. 2, pp. 35-44, 2015.

(41) M. H. Bruscatto, R. C. Zambiazi, M. Sganzerla, V. R. Pestana, et al. “Degradation of Tocopherols in Rice Bran Oil Submitted to Heating at Different Temperatures,” Journal of Chromatographic Science, vol. 47, no. 9, pp. 762-765, 2009.

(42) R. Patwardhan, R. Checker, D. Sharma, V. Kohli, et al., “Dimethoxycurcumin, a metabolically stable analogue of curcumin, exhibits anti-inflammatory activities in murine and human lymphocytes,” Biochemical Pharmacology, vol. 82, no. 6, pp. 642-657, 2011.

(43) M. Ogutveren, and S. S. Tetik, “Composition of the essential oil of Cistus parviflorus L. from Turkey,” Journal of Essential Oil Research, vol. 16, no. 2, pp. 115-116, 2004.

Downloads

Published

2024-07-07

How to Cite

Najah, Z. M., & Algaw, N. A. (2024). Antioxidation activity and organic components analysis of Cestus Parviflorus grown in Libya. Journal of Academic Research, 28(2), 54–65. Retrieved from https://lam-journal.ly/index.php/jar/article/view/711

Issue

Section

Basic Sciences