Hand swab contamination of medical personal by pseudomonas aeruginosa at MNCC clinics and wards

Authors

  • Ibrahim A. Teka Medical laboratory department - Misurata Medical Technology College
  • Khdija S. M. Ali Biology Department / Faculty of Science – Aljufra University
  • Omar K. Alatrash Medical laboratory department - Misurata Medical Technology College
  • Aisha I. Abudabus Medical laboratory department - Misurata Medical Technology College
  • Maryam M. Fellag Medical laboratory department - Misurata Medical Technology College
  • Eftima Ehmyda Medical laboratory department - Misurata Medical Technology College
  • Laila Alfageih Department of Medical Science/ Faculty of Dentistry - Tobrouk University

Keywords:

P. aeruginosa, RT-PCR, hospital & medical , contamination

Abstract

P.aeroginosa is one of the most serious pathogens of infections, it produces Metallo-β-lactamases which is a diverse set of enzymes that catalyze the hydrolysis of a broad range of β-lactam drugs including carbapenem. Contamination with this pathogen remain one of the most serious problems in Hospitals, especially with the intensive exposure to antibiotics, where many studies reported that P.aeroginosa has developed resistance thus cause high rate of mutations. This will complicate the situation and improve the maximum limit for possible antibiotic treatment (14; 29). Alternatively, diagnosis efficiency will lead to treatment failure and complicate the situation, therefore it is important to introduce new tools to the followed routine identification procedures of P. aeruginosa at Libyan hospitals.

References

WHO, Prevention of Hospital-Acquired Infections, World Health Organization, Geneva,Switzerland,2015, http://www.who.int/csr/resources/ publications/whocdscsreph200212.pdf.

L. Sehulster and R. Y. Chinn, “Guidelines for environmental infectioncontrolinhealth-carefacilities:recommendationsof CDC and the healthcare infection control practices advisory committee (HICPAC),” MMWR Recommendations and Reports, vol. 52, no. 10, pp. 1–42, 2003.

H. E. L. D. Boer, C. M. van Elzelingen-Dekker, C. M. F. van Rheenen-Verberg, and L. Spanjaard, “Use of gaseous ozone for eradication of methicillin-resistant Staphylococcus aureus from the home environment of a colonized hospital employee,” Infection Control & Hospital Epidemiology, vol. 27, no. 10, pp. 1120–1122, 2006.

E. Caselli, L. Arnoldo, C. Rognoni et al., “Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: a multicenter study,” Infection and Drug Resistance, vol. 12, pp. 501–510, 2019.

A. Penesyan, M. Gillings, & I. T. Paulsen (2015). Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules, 20(4), 5286-5298.

J. P. Pearson, E.C. Pesci, & B. H. Iglewski (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology, 179(18), 5756-5767. doi: 10.1128/jb.179.18.5756-5767.1997

Meluleni, G. J., Grout, M., Evans, D. J., & Pier, G. B. (1995). Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exopolysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. The Journal of Immunology, 155(4), 2029-2038.

Bodey, G. P., Bolivar, R., Fainstein, V., & Jadeja, L. (1983). Infections Caused by Pseudomonas aeruginosa. Reviews of Infectious Diseases, 5(2), 279-313. doi: 10.1093/clinids/5.2.279

V. Jonsson. (1970). Proposal of a new species Pseudomonas kingii1. International Journal of Systematic and Evolutionary Microbiology, 20(3),255-257.doi: https://doi.org/10.1099/00207713-20-3-255

Ma, L., Jackson, K. D., Landry, R. M., Parsek, M. R., & Wozniak, D. J. (2006). Analysis of Pseudomonas aeruginosa Conditional Psl Variants Reveals Roles for the Psl Polysaccharide in Adhesion and Maintaining Biofilm Structure Postattachment. Journal of Bacteriology, 188(23), 8213-8221. doi: 10.1128/jb.01202-06.

G. Döring, M. Maier, E. Müller, Z. Bibi, B. Tümmler, & A. Kharazmi. Virulence Factors of Pseudomonas aeruginosa. Antibiot Chemother (1971). 1987;39:136-48. doi: 10.1159/000414341. PMID: 3118780.

D. I. Andersson. (2003). Persistence of antibiotic resistant bacteria. Current Opinion in Microbiology, 6(5), 452-456. doi: https://doi.org/10.1016/j.mib.2003.09.001.

A. P. Zavascki, C. G. Carvalhaes, R.C. Pica˜o & A. C. Gales (2010) Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev Anti Infect Ther 8: 71–93.

A. I. Hidron, J. R. Edwards, J. Patel, T.C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin. (2008) National Healthcare Safety Network Team & Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29: 996–1011.

V. G. Burrus, B. Pavlovic, Decaris, and G. Guedon. (2002). Conjugative transposons: the tip of the iceberg. Mol. Microbiol.46:601-610.

K. D. Schmidt, B. Tummler, & U. Romling. (1996). Comparative genome mapping of Pseudomonas aeruginosa PAO with P. aeruginosa C, which belongs to a major clone in cystic fibrosis patients and aquatic habitats. J Bacteriol 178, 85–93

D. G. Lee, et al. (2006). Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7, R90, https://doi.org/10.1186/gb-2006-7-10-r90.

J. Klockgether,N. Cramer, L. Wiehlmann, C. F. Davenport, & B. Tummler. (2011). Pseudomonas aeruginosa Genomic Structure and Diversity. Front Microbiol 2, 150, https://doi.org/10.3389/fmicb.2011.00150.

V. L. Kung, E. A. Ozer, & A. R. Hauser. (2010).The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev74,621–641,https://doi.org/10.1128/MMBR.00027-10

J. Jeukens, et al. Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients. PLoS One 9, e87611, https://doi.org/10.1371/journal.pone.0087611 (2014).

A. Ashish, M. Shaw, C. Winstanley, M. J. Ledson, & M. J. Walshaw. (2012). Increasing resistance of the Liverpool Epidemic Strain (LES) of Pseudomonas aeruginosa (Psa) to antibiotics in cystic fibrosis (CF)–a cause for concern? J Cyst Fibros11,173–179, https://doi.org/10.1016/j.jcf.2011.11.004

H. Vaez. et al. (2014). Efflux pump regulatory genes mutations in multidrug resistance Pseudomonas aeruginosa isolated from wound infections in Isfahan hospitals. Adv Biomed.Res3,117, https://doi.org/10.4103/2277-9175.133183

G. F. Gad, R. A. El-Domany, S. Zaki, & H. M. Ashour. (2007). Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. J Antimicrob Chemother 60, 1010–1017https://doi.org/10.1093/jac/dkm348.

S. Kouda, et al. (2009). Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J Antimicrob Chemother64,46–51, https://doi.org/10.1093/jac/dkp142

A. Mahmoud, W. Zahran, G. Hindawi, A. Labib, & R. Galal. (2013). Prevalence of multidrug-resistant Pseudomonas aeruginosa in patients with nosocomial infections at a University hospital in Egypt, with special reference to typing methods. Journal of Virology & Microbiology, 1–13, https://doi.org/10.5171/2013.290047.

C. Pena, et al. (2012). Prospective multicenter study of the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bloodstream infections. Antimicrob Agents Chemother56,1265–1272, https://doi.org/10.1128/AAC.05991-11.

D. M. Livermore. (2002). Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis34634–640, https://doi.org/10.1086/338782.

R. Lavenir, D. Jocktane, F. Laurent, S. Nazaret, B. Cournoyer. (2007). Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods. Jul; 70(1):20-9.doi: 10.1016/j.mimet.2007.03.008. Epub 2007 Mar 30. PMID: 17490767.

R. F. Chemaly, S. Simmons, C. Dale Jr. et al., (2014). The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment,” Cerapeutic Advances in Infectious Disease, vol. 2, no. 3-4, pp. 79–90.

J. W. Costerton, P. S. Stewart, and E. P. Greenberg. (1999). Bacterial biofilms: a common cause of persistent infections. Science284:1318-1322.

Downloads

Published

2023-03-31

How to Cite

Teka, I. A., Ali , K. S. M., Alatrash, O. K., Abudabus, A. I., Fellag, M. . M., Ehmyda, E., & Alfageih, L. (2023). Hand swab contamination of medical personal by pseudomonas aeruginosa at MNCC clinics and wards. Journal of Academic Research, 24, 18–22. Retrieved from https://lam-journal.ly/index.php/jar/article/view/557

Issue

Section

العلوم الهندسية والتطبيقية