Optimal FDM Parameters Setting in Enhancing Impact Strength of PP/UHMWPE composite Using Fractal Factorial Design
Keywords:
Fused Deposition Modeling, Impact Strength, process parametersAbstract
This paper aims to account a comprehensive study on the effect of Fused Deposition Modelling (FDM) parameters towards impact strength of Polypropylene/Ultra-High Molecular Weight Polyethylene (PP/UHMWPE) (90/10) composite using Fractal Factorial Design (FFD). The current study converged the investigation on five parameters namely; layer thickness (LT), number of shells (NOS), extrusion temperature (T), raster angle (RA), and infill speed (IS). The impact strength samples were manufactured according to the FFD recommended runs, which take two levels for every parameter into account. Scanning electron microscope (SEM) analysis was done to explore the effect of parameters setting on the samples’ microstructure and insight on the correlation between samples’ impact strength and parameters setting. The outcomes from the experiment revealed a significant effect for all investigated parameters but in various levels including some of the 2-factor interactions. Layer thickness has dominating effect as compared to single effect parameters, followed by infill speed. Layer thickness and number of shells interaction has the highest effect of all the parameters interactions. The best parameters setting has improved the impact strength of PP/UHMWPE composite by 61.5% compared with the worst setting results. Output of this study provides distinct insight into the effect of FDM parameters on the impact strength of PP/UHMWPE (90/10) composite. SEM investigation revealed the details behind altering the impact strength as result of process parameters changing.
References
Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 3(1), 42-53.
Javaid, M., & Haleem, A. (2018). Additive manufacturing applications in medical cases: A literature based review. Alexandria Journal of Medicine, 54(4), 411-422.
Heidari-Rarani, M., Ezati, N., Sadeghi, P., & Badrossamay, M. R. (2020). Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. Journal of Thermoplastic Composite Materials, 0892705720964560.
Popescu, D., Zapciu, A., Amza, C., Baciu, F., & Marinescu, R. (2018). FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157-166.
Saad, M. S., Nor, A. M., Baharudin, M. E., Zakaria, M. Z., & Aiman, A. F. (2019). Optimization of surface roughness in FDM 3D printer using response surface methodology, particle swarm optimization, and symbiotic organism search algorithms. The International Journal of Advanced Manufacturing Technology, 105(12), 5121-5137.
Boschetto, A., & Bottini, L. (2016). Design for manufacturing of surfaces to improve accuracy in Fused Deposition Modeling. Robotics and Computer-Integrated Manufacturing, 37, 103-114.
Ali, F., & Maharaj, J. 2014. Influence of Some Process Parameters on Build Time , Material Consumption , and Surface Roughness of FDM Processed Parts : Inferences Based on the Taguchi Design of Experiments. Proceedings of the 2014 IAJC/ISAM Joint International Conference.
Mohamed, O. A., Masood, S. H., & Bhowmik, J. L. (2015). Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Advances in Manufacturing, 3(1), 42-53.
Rayegani, F., & Onwubolu, G. C. 2014. Fused deposition modelling (fdm) process parameter prediction and optimization using group method for data handling (gmdh) and differential evolution (de). International Journal of Advanced Manufacturing Technology. 73(1–4): 509–519.
Mohamed, O. A., Masood, S. H., Bhowmik, J. L., Nikzad, M., & Azadmanjiri, J. (2016). Effect of process parameters on dynamic mechanical performance of FDM PC/ABS printed parts through design of experiment. Journal of materials engineering and performance, 25(7), 2922-2935.
Panda, S. K. 2009. Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique. Intelligent Information Management. 1(2) : 89–97.
Jacob, G. C., Fellers, J. F., Simunovic, S., & Starbuck, J. M. (2002). Energy absorption in polymer composites for automotive crashworthiness. Journal of composite materials, 36(7), 813-850.
Huang, B., & Singamneni, S. (2015). Raster angle mechanics in fused deposition modelling. Journal of Composite Materials, 49(3), 363-383.
Fatimatuzahraa, A. W., Farahaina, B., & Yusoff, W. A. Y. (2011, September). The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts. In 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA) (pp. 22-27). IEEE.
Ayatollahi, M. R., Nabavi-Kivi, A., Bahrami, B., Yahya, M. Y., & Khosravani, M. R. (2020). The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Engineering Fracture Mechanics, 237, 107225.
Onwubolu, G. C., & Rayegani, F. (2014). Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. International Journal of Manufacturing Engineering, 2014.
Masood, S. H., Mau, K., & Song, W. Q. 2010. Tensile Properties of Processed FDM Polycarbonate Material. Materials Science Forum. 654–656: 2556–2559.
Santhakumar, J., Maggirwar, R., Gollapudi, S., Karthekeyan, S., & Kalra, N. 2016. Enhancing Impact Strength of Fused Deposition Modeling Built Parts using Polycarbonate Material. Indian Journal of Science and Technology. 9(34): 1-6.
Domingos, M., Chiellini, F., Gloria, a., Ambrosio, L., Bartolo, P., & Chiellini, E. 2012. Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(?-caprolactone) scaffolds. Rapid Prototyping Journal. 18: 56–67.
Carneiro, O. S., Silva, A. F., & Gomes, R. 2015. Fused deposition modeling with polypropylene. Materials & Design. 83: 768–776.
Lanzotti, A., Grasso, M., Staiano, G., & Martorelli, M. 2015. The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal. 21(5): 604–617.
Lužanin, O., Movrin, D., & Plan, M. (2014). Effect of layer thickness, deposition angle, and infill on maximum flexural force in FDM-built specimens. Journal for Technology of Plasticity, 39 (1), 50-57.
Bala, A., Wahab, S., Ahmed, M. 2016. Experimental study on mechanical properties of polypropylene/ultra-high molecular weight polyethylene blend processed by modeling. International conference on science, engineering, management and social sciences (ICSEMSS). Skudai, Johor.
aqib, S., & Urbanic, J. 2012. An Experimental Study to Determine Geometric and Dimensional Accuracy Impact
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Abduladim S. Bala، Saidin B. Wahab
This work is licensed under a Creative Commons Attribution 4.0 International License.