Improved Asymptotic Confidence Interval for the Mean of Poisson Distribution

المؤلفون

  • Elsidieg Belhaj Department of Statistics, Faculty of Science, Misurata University

الملخص

The interval estimation of the Poisson parameter  is commonly presented problem in textbook. The Wald interval is the most frequently used confidence interval for estimating Poisson parameter, and it is based on the asymptotic properties of the sample mean. The Wald interval has a chaotic behaviour in terms of coverage probability, particularly when   is small. The well known Score interval is recommend by many authors as an alternative to the Wald interval. This paper proposes a new confidence interval for estimating  that has a better performance in terms of coverage probability than the Wald  interval as well as smaller confidence width than the Score interval.

المراجع

. Santner T. J.; A Note on Teaching Binomial Confidence Limits., Annals of Mathematical Statistics, 1998, 20: 20-23.

. Ghosh B. K.; A Comparison of Some Approximate Confidence Intervals for the Binomial Parameter., Journal of the American Statistical Association, 1979, 74: 894-900.

. Agresti A. and Coull B.; Approximate Is Better than Exact for Interval Estimation of Binomial Proportions., The American Statistician, 1998, 52:119-126.

. Blyth C. R., and Still H. A.; Binomial Confidence Interval., Journal of the American Statistical Association, 1983, 78: 108-116.

. Wilson E. B.; Probable Inference, the Law of Succession, and Statistical Inference., Journal of the American Statistical Association, 1927, 22: 209-212.

. Schader M., and Schmid F.; Charting Small Sample Characteristics of Asymptotic Confidence Interval for the Binomial Parameter p.; Statist. Papers, 1990, 31: 251-264.

. Brown L. D., Cai T. T., and DasGupta A.; Confidence Intervals for a Binomial Proportion and Asymptotic Expansion., The Annals of Statistics, 2002, 30:160-201.

. Bartlett M.S.; The Square Root Transformation in the Analysis of Variance., Journal of Royal Statistical Society Supplement 3, 1936, 68-78.

. Begaud B., Karin M., Abdelilah A., Pascale T., Nicholas M., and Yola M.; An Easy to Use Method to Approximate Poisson Confidence Limits., European Journal of Epidemiology, 2005, 20(3): 213-216.

. Schwerman N. C., and Martinez R. A.; Approximate Poisson confidence limits., Communication in Statistics – Theory and Methods., 1994, 23(5): 1507-1529.

. Barker L. A.; Comparison of Nine Confidence Intervals for a Poisson Parameter When the Expected Number of Events Is ≤5., The American Statistician, 2002, 56:85-89.

. Khamkong M.; Approximate Confidence Interval for the Mean of Poisson Distribution., Open Journal of Statistics, 2012, 2: 204-207

. G. Casella and R. L. Berger, “Statistical Inference” 2nd Edition, Wadsworth, West Yorkshire, 2002.

. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013.

التنزيلات

منشور

2018-06-30

كيفية الاقتباس

Belhaj, E. (2018). Improved Asymptotic Confidence Interval for the Mean of Poisson Distribution. مجلة البحوث الأكاديمية, 12, 415–423. استرجع في من https://lam-journal.ly/index.php/jar/article/view/983

إصدار

القسم

المقالات