تخليق وتوصيف ونشاط مضاد للميكروبات لمركب [CU(BPY)2]CL2
الكلمات المفتاحية:
Copper(II) complex، 2,2'-bipyridine، crystal structure، nanoparticles، antimicrobial activityالملخص
حيود الأشعة السينية (XRD)، والمجهر الإلكتروني الماسح (SEM)، والمجهر الذري للقوة (AFM)، والتشتت الضوئي الديناميكي (DLS)، وتحليل جهد زيتا. كشف حيود الأشعة السينية عن بنية بلورية للغاية، بينما أظهر المجهر الإلكتروني الماسح والمجهر الذري للقوة (AFM) مورفولوجيا طبقية بخصائص نانوية. أشار DLS إلى متوسط قطر هيدروديناميكي يبلغ 45 نانومتر، وأشارت قياسات جهد زيتا إلى استقرار غرواني معتدل مع شحنة سطحية تبلغ -25 مللي فولت. أظهر المركب نشاطًا مضادًا للميكروبات بشكل كبير ضد الإشريكية القولونية، حيث أظهر منطقة تثبيط تبلغ 18 ± 1 مم، وهي مماثلة لمنطقة التحكم بالجنتاميسين (22 ± 1 مم). يُعزى هذا النشاط إلى آليات محتملة بما في ذلك توليد أنواع الأكسجين التفاعلية، وتفاعل الحمض النووي، وتحلل البروتين، وتدمير الغشاء. تشير النتائج إلى أن مركب Cu(II) هذا واعد كعامل مضاد للميكروبات جديد، مما يستدعي مزيدًا من التحقيق في قابلية تطبيقه الأوسع وآلية عمله.
المراجع
Turel I. Special issue: practical applications of metal complexes. Molecules. 2015 Apr 30;20(5):7951-6. doi: 10.3390/molecules20057951. PMID: 26007166; PMCID: PMC6272723.
Ghosh SK. Diversity in the Family of Manganese Oxides at the Nanoscale: From Fundamentals to Applications. ACS Omega. 2020 Oct 5;5(40):25493-25504. doi: 10.1021/acsomega.0c03455. PMID: 33073076; PMCID: PMC7557223.
Kaes, Christian & Katz, Alexander & Hosseini, Mir. (2000). Bipyridine: The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2,2‘-Bipyridine Units. Chemical reviews. 100. 3553-90. 10.1021/cr990376z.
Kilner CA, Halcrow MA. Change in electronic structure in a six-coordinate copper(II) complex accompanied by an anion order/disorder transition. Acta Crystallogr B. 2010 Apr;66(Pt 2):206-12. doi: 10.1107/S0108768110003678. Epub 2010 Mar 16. PMID: 20305354.
Chandrakumar, Krs & Pal, Sourav. (2002). Study of Local Hard−Soft Acid−Base Principle to Multiple-Site Interactions. Journal of Physical Chemistry A - J PHYS CHEM A. 106. 10.1021/jp014499a.
Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 21, 3965. https://doi.org/10.3390/ijms21113965.
Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003 Nov;57(9):386-98. doi: 10.1016/s0753-3322(03)00012-x. PMID: 14652164; PMCID: PMC6361146.
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol. 2023 Aug 2;14:1236063. doi: 10.3389/fimmu.2023.1236063. PMID: 37600774; PMCID: PMC10433393.
Surry DS, Buchwald SL. Diamine Ligands in Copper-Catalyzed Reactions. Chem Sci. 2010;1(1):13-31. doi: 10.1039/C0SC00107D. PMID: 22384310; PMCID: PMC3289286.
Mohammadidehcheshmeh, Iman & Poursattar, Ahmad & Sadegh, Fatemeh & Soltani, Mohammad Ebrahim. (2024). Copper Application and Copper Nanoparticles in Chemistry. 10.5772/intechopen.1004068.
Singh, R.; Singh, G.; George, N.; Singh, G.; Gupta, S.; Singh, H.; Kaur, G.; Singh, J. Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry. Catalysts 2023, 13, 130. https://doi.org/10.3390/catal13010130.
Zahn, Stefan & Reckien, Werner & Kirchner, Barbara & Staats, Holger & Matthey, Jens & Lützen, Arne. (2009). Towards Allosteric Receptors: Adjustment of the Rotation Barrier of 2,2 '-Bipyridine Derivatives. Chemistry (Weinheim an der Bergstrasse, Germany). 15. 2572-80. 10.1002/chem.200801374.
Nemcsok, Denes & Wichmann, Karin & Frenking, Gernot. (2004). The Significance of π Interactions in Group 11 Complexes with N-Heterocyclic Carbenes. Organometallics. 23. 10.1021/om049802j.
Haas KL, Franz KJ. Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev. 2009 Oct;109(10):4921-60. doi: 10.1021/cr900134a. PMID: 19715312; PMCID: PMC2761982.
Constable, E.C.; Housecroft, C.E. Packing Motifs in [M(bpy)2X2] Coordination Compounds (bpy = 2,2′-bipyridine; X = F, Cl, Br, I). Crystals 2023, 13, 505. https://doi.org/10.3390/cryst13030505.
May, Ann & Dempsey, Jillian. (2024). A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions. Chemical Science. 15. 10.1039/d3sc05268k.
Kumagai H, Tamaki Y, Ishitani O. Photocatalytic Systems for CO2 Reduction: Metal-Complex Photocatalysts and Their Hybrids with Photofunctional Solid Materials. Acc Chem Res. 2022 Apr 5;55(7):978-990. doi: 10.1021/acs.accounts.1c00705. Epub 2022 Mar 7. PMID: 35255207; PMCID: PMC8988296.
Crispini, Alessandra & Cretu, Carmen & Dreava, Diana & Andelescu, Adelina & Sasca, Viorel & Badea, Valentin & Aiello, Iolinda & Szerb, Elisabeta & Costisor, Otilia. (2017). Influence of the counterion on the geometry of Cu(I) and Cu(II) complexes with 1,10-phenanthroline. Inorganica Chimica Acta. 470. 10.1016/j.ica.2017.05.064.
Sinha, N., & Wenger, O. S. (2023). Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d6 Complexes with Cr0, MnI, FeII, and CoIII. Journal of the American Chemical Society, 145(9), 4903-4920. https://doi.org/10.1021/jacs.2c13432.
Abdel Rahman, Afaf & Mahboub, Heba & Ezz-Eldin, Rasha & Abdelwarith, Dr: Abdelwahab & Younis, Elsayed & Khamis, Tarek & Aziz, Enas & Basha, Walaa & Elmaghraby, Ibrahim & Davies, Simon & Ismail, Sameh & Reyad, Yasmin. (2024). Lead toxicity in African catfish: Promising role of magnetite nanogel against etho-neurological alterations, antioxidant suppression, gene toxicity, and histopathological/ immunohistochemical disruptions. Aquaculture. 594. 741411. 10.1016/j.aquaculture.2024.741411.
Youssef, Fady & Fouad, Omar & Ismail, Sameh & Mohamed, Gehad. (2024). Therapeutic and Toxicological Aspects of Some Metal Nanoparticles on The Central Nervous System: A Review. Egyptian Journal of Veterinary Sciences. 55. 733-745. 10.21608/ejvs.2023.234784.1609.
Youssef, Fady & Fawzy, Heba & Ismail, Sameh & Mohamed, Gehad. (2024). The Role of Gold - Silver Nanocomposite Gel versus Astragalus Polysaccharides on Healing Process of Experimentally Induced Wound in Albino Rats Pharmacological and Histological Comparative Study. Egyptian Journal of Veterinary Sciences. 55. 803-816. 10.21608/ejvs.2023.247684.1668.
Katowah, Dina & Ismail, Sameh & Alzahrani, Hanan & Rahman, Mohammed & Abd el-fadeel, Mohamed. (2024). Design of a novel nanosensor based on nanocomposite hydrogel composed of a PVA-poly(aniline-co-pyrrole) conducting copolymer-(PbO-doped NiO)-OXSWCNTs-coated QCM for rapid detection of cd (II) ions. Journal of Materials Science: Materials in Electronics. 35. 10.1007/s10854-024-12573-w.
Al-Sodies, Salsabeel & Asiri, Abdullah M. & Ismail, Sameh & Alamry, Khalid & Hussein, Mahmoud. (2024). Development of poly(safranine-co-phenosafranine)/GNPs/MWCNTs nanocomposites for quartz crystal microbalance sensor detection of arsenic (III) ions. Materials Research Express. 11. 10.1088/2053-1591/ad37a5.
Abdel Rahman, Afaf & Mahboub, Heba & Elshopakey, Gehad & Darwish, Mahmoud & Gharib, Heba & Shaalan, Mohamed & Fahmy, Esraa & Abdel-Ghany, Heba & Ismail, Sameh & Elsheshtawy, Hassnaa. (2024). Pseudomonas putida infection induces immune-antioxidant, hepato-renal, ethological, and histopathological/immunohistochemical disruptions in Oreochromis niloticus: the palliative role of titanium dioxide nanogel. BMC Veterinary Research. 127. 1-13. 10.1186/s12917-024-03972-6.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Otman Elmajdoub Elsusi، Fouad Abdullah Jahan

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.