Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Dibenzylideneacetone-Based Random Aromatic Copolyesters

المؤلفون

  • Tareg M. Elsunaki جامعة مصراتة
  • Afaf S. Khadhar
  • Fatima A. Alzanzi
  • Ali M. Alhalib

الكلمات المفتاحية:

Random copolyesters، structure–property، relationship

الملخص

A multi-technique study of copolyesters V – VII reveals that molecular weight distribution (polydispersity index, PDI) governs polymer properties more strongly than absolute molecular weight. Narrow distributions promote uniform crystallization, enhancing thermal stability, mechanical strength, surface organization, and interfacial properties, whereas broad distributions lead to heterogeneous structures and reduced consistency. Copolyester VII, with moderate molecular weight (30,000 g mol⁻¹) and narrow PDI (1.20), achieved optimal thermal stability (Tₘ = 582 °C), high crystallinity (65%, 45.2 nm crystallite size), hydrophobicity (contact angle = 93.76°), and tensile strength (72.5 MPa), demonstrating the advantage of distribution control over molecular weight maximization. Copolyesters V and VI illustrate how moderate molecular weight or broad distributions can tailor surface or processing properties, respectively. Mechanistic analysis shows that distribution uniformity dictates crystallization kinetics and structural order, providing predictive structure–property relationships. These insights enable rational material selection for high-performance, surface-critical, or processing-intensive applications while reducing synthesis complexity, resource consumption, and environmental impact. This work establishes molecular weight distribution as a key parameter for designing next-generation, sustainable polymer materials.

المراجع

Chen, L., Wang, Y. and Zhao, J. Influence of Random Copolymer Structures on Thermal and Mechanical Properties, Journal of Polymer Science, 2020, 58(4), 512–525.

Zhang, Q., Li, M. and Zhou, X. Effect of Functional Group Distribution on Physical Properties of Random Copolymers, Polymer Chemistry, 2019, 10(12), 1560–1574.

Kumar, A. and Singh, R. Random Copolymers in Advanced Applications: A Review, Progress in Polymer Science, 2021, 118, 101413.

Ben Saleh, A. B.; Elsunaki, T. M. and Abd-Alla, M. A. synthesis and Characterization of New Unsaturated Polyesters Based on 4,4-Dihydroxy Dibenzylideneacetone, Journal of Academic Research, 2017, 9, 405–419.

Preparation and Study of Some Liner Polyesters Based on Divanillylideneacetone Moiety, A. B. Ben Saleh, T. M. Elsunaki and M. A. Abd-Alla, Science Journal, 2017, 7, 28–33.

Kamal, I. A.; Ahmed, S. H.; Shaban, M. R.; and Mona, A. A. New Unsaturated Copolyesters Based on Diarylidenecyclopentanone. Optimum Conditions of Synthesis, Characterization and Morphology, International Journal of Basic & Applied Sciences IJBAS-IJENS, 2011, 11, 14–22.

Odian, G. A.; Imre, K. J. Kinetics and Mechanisms of Polymerization Reactions, Journal of Polymer Science Part A: Polymer Chemistry 1980, 18, 737–751.

Bawa, R. Electric conductivity study of o-substituted phenoxo iron (III) complexes, Journal of Chemistry and Chemical Engineering, 2010, 4, 54–58

Brown, T., Patel, S. and Morgan, K. Molecular Weight Distribution Effects in Polyesters, Macromolecules, 2018, 51(2), 730–742.

Ahmed, M. and Lee, D. Correlation Between PDI and Polymer Crystallization Kinetics, Polymer Journal, 2017, 49(9), 1123–1134.

Silva, R. and Barbosa, L. GPC Analysis of Aromatic Copolyesters, Journal of Applied Polymer Science, 2016, 133(45), 441–452.

Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer: New York, 2017.

Yang, X. and Kim, S. Surface Morphology of Semi-Crystalline Polymers with Different PDIs, Langmuir, 2019, 35(22), 7143–7152.

Patel, V. and Sun, Z. AFM Study of Random Copolyester Surfaces, Surface Science Reports, 2020, 75(5), 101–118.

Lee, H. and Cho, K. Wettability and Roughness in Aromatic Polyesters, Applied Surface Science, 2018, 433, 1204–1212.

Abd-Alla, M. A. and Aly, K. I. Arylidene Polymers XIII—Synthesis, Characterization and Morphology of New Unsaturated Polycarbonates via Phosgenation of Diarylidenecycloalkanones. High Perform. Polym. 1990, 2(4), 223–234.

Park, Y. and Jeong, D. Thermal Behavior of Polyesters with Controlled PDI, Thermochimica Acta, 2016, 642, 1–10.

Ghosh, P. DSC Analysis of Random Aromatic Polyester Blends, Journal of Thermal Analysis and Calorimetry, 2017, 128(3), 1553–1565.

Mahmoud, A. and Hassan, R. DLS and Colloidal Stability of Aromatic Copolymers, Colloid and Polymer Science, 2019, 297, 135–148.

Fischer, J. and Müller, R. Mechanical Behavior of Polyesters with Variable Molecular Weight Distribution, Polymer Testing, 2018, 67, 122–132.

Wang, F. and Xu, L. XRD Investigation of Polyester Crystallinity, Crystalline Materials, 2020, 12, 88–101.

Tanaka, S. and Mori, Y. Effect of PDI on Crystal Structure in Aromatic Copolyesters, Journal of Materials Chemistry, A 2019, 7, 5560–5570.

التنزيلات

منشور

2026-01-02

كيفية الاقتباس

Elsunaki, T. M., Khadhar, A. S., Alzanzi, F. A., & Alhalib, A. M. (2026). Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Dibenzylideneacetone-Based Random Aromatic Copolyesters. مجلة البحوث الأكاديمية, 30(01), 21–32. استرجع في من https://lam-journal.ly/index.php/jar/article/view/1347

إصدار

القسم

العلوم الأساسية