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ABSTRACT 

In this paper we calculate the first-order cohomology group ℋ  1(ℓ 1(𝑆), ℓ ∞(𝑆)), where 𝑆 is a 

commutative, 0-cancellative, 𝑛𝑖𝑙 #-semigroup.      
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1. INTRODUCTION 

In [1], Bowling and Duncan investigated the first-order cohomology group ℋ1(ℓ 1(𝑆), ℓ ∞(𝑆)) 
and ℋ  1(ℓ 1(𝑆), ℓ 1(𝑆)) for some classes of discrete semigroups, such as Clifford semigroups, 

Rees semigroups, and bicyclic semigroups. They also studied the cyclic cohomology in these 

cases. For a Banach algebra 𝒜 and a Banach 𝒜-bimodule 𝑋, it was shown that it is often 

possible to compute ℋ  1(𝒜, 𝑋), where 𝑋 is 𝒜, or 𝑋 is 𝒜∗, with their bimodule products. For 

example, in the case of bicyclic semigroups 𝑆, it was proved that ℋ1(ℓ 1(𝑆), ℓ ∞(𝑆)) is 

isomorphic to ℓ ∞(ℕ).  
In our result we shall establish a relationship between the first-order cohomology group 

ℋ  1(ℓ 1(𝑆), ℓ ∞(𝑆)) , where the semigroup 𝑆 is a commutative, 0-cancellative, 𝑛𝑖𝑙 #-semigroup, 

and the direct sum ⊕𝑥≠𝑜∈𝑆 𝑉𝑆
∗(𝑥)⊕𝐶∈𝒞𝑊𝐶

∗ for non-zero elements 𝑥 of 𝑆, where the direct sum 

is in the sense of ℓ ∞.  

 

 

2. Preliminaries 

Let 𝑆 be a semigroup. An element 𝑒 ∈ 𝑆 is an identity if 𝑒𝑠 = 𝑠𝑒 = 𝑠    (𝑠 ∈ 𝑆). A semigroup 

with an identity is a unital semigroup. 

Suppose that 𝑆 does not have an identity. Then we choose 𝑒 ∉ 𝑆, and set 𝑆  # = 𝑆 ∪ {𝑒} with 

𝑒𝑠 = 𝑠𝑒 = 𝑠    (𝑠 ∈ 𝑆) and 𝑒2 = 𝑒. Then 𝑆  # is a semigroup, called the unitization of 𝑆. 

Let 𝑆 be a semigroup, and 𝑥, 𝑦 ∈ 𝑆. Then 𝑦|𝑥 means that 𝑥 ∈ 𝑦𝑆#. 

A zero of 𝑆 is an element 𝑜 ∈ 𝑆 with 𝑜𝑠 = 𝑠𝑜 = 𝑜2 = 𝑜    (𝑠 ∈ 𝑆). 

 

Definition 2.1  Let 𝑆 be a unital, commutative semigroup. Then, for 𝑥 ∈ 𝑆, we define  

 𝑀𝑥 = {(𝑦, 𝑧) ∈ 𝑆 × 𝑆: 𝑦𝑧 = 𝑥}    a𝑛𝑑    𝑉𝑆(𝑥) = {𝑦 ∈ 𝑆: 𝑥 ∈ 𝑦𝑆} . (2.1) 

 We call 𝑉𝑆(𝑥) the set of divisors of 𝑥. 

Note that 𝑎, 𝑏 ∈ 𝑉𝑆(𝑥) whenever 𝑎𝑏 ∈ 𝑉𝑆(𝑥) , and also 𝑥 ∈ 𝑉𝑆(𝑥) because 𝑆 has an identity. 

The following notion (in a different, additive notation) is given in [2], §4.  

Definition 2.2 Let 𝑆 be a unital commutative semigroup. For each 𝑥 ∈ 𝑆, we define the space 

𝑉𝑆
∗(𝑥) to consist of the bounded functions 𝑔: 𝑉𝑆(𝑥) → ℂ satisfying the logarithmic condition  
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 𝑔(𝑎𝑏) = 𝑔(𝑎) + 𝑔(𝑏) (2.2) 

 whenever 𝑎, 𝑏 ∈ 𝑆 and 𝑎𝑏 ∈ 𝑉𝑆(𝑥) .  

Clearly 𝑉𝑆
∗(𝑥) is a linear space containing the zero function. 

Note that 𝑉𝑆(𝑒) = {𝑒} and that 𝑉𝑆
∗(𝑒) = {0}  . Also, in the case where 𝑆 has a zero 𝑜 , 𝑉𝑆(𝑜) = 𝑆 

and 𝑉𝑆
∗(𝑜) = {0}  .  

Example 2.3 Take 𝑆 = ℝ+ × ℝ+ with normal addition. Then 𝑆 is a unital, commutative 

semigroup, and 𝑑𝑖𝑚𝑉𝑆
∗(𝑥) ≥ 2 for some non-zero 𝑥 ∈ 𝑆 .  

 Take the non-zero element 𝑥 = (1,1) in 𝑆. So that we have 𝑉𝑆(𝑥) = [0,1] × [0,1] . For 

(𝑟, 𝑠) ∈ 𝑉𝑆(𝑥), define the functions 𝑔1, 𝑔2: 𝑉𝑆(𝑥) → ℂ by 𝑔1(𝑟, 𝑠) = 𝑟 and 𝑔2(𝑟, 𝑠) = 𝑠 . Then 

𝑔1, 𝑔2 ∈ 𝑉𝑆
∗(𝑥) and, since 𝑔1 and 𝑔2 are linearly independent, dim𝑉𝑆

∗(𝑥) ≥ 2 .            ∎ 

Proposition 2.4 Let 𝑆 be a unital, commutative semigroup and suppose that 𝑥 ∈ 𝑆 is a non-zero 

element with 𝑑𝑖𝑚𝑉𝑆
∗(𝑥) ≥ 2 . Then there exists a non-zero 𝑔 ∈ 𝑉𝑆

∗(𝑥) with 𝑔(𝑥) = 0 .  

 Proof Let 𝑔1 and 𝑔2 be linearly independent functions in 𝑉𝑆
∗(𝑥). If 𝑔1(𝑥) = 0, then take 

𝑔 = 𝑔1 . Otherwise consider  

 𝑔 = 𝑔2 −
𝑔2(𝑥)

𝑔1(𝑥)
⋅ 𝑔1 . 

Then 𝑔 ∈ 𝑉𝑆
∗(𝑥) and 𝑔(𝑥) = 0 . Thus the proposition is proved.            ∎ 

 Suppose that 𝑆 is a commutative, 0-cancellative semigroup, that 𝑟 ∈ 𝑆\{𝑜} , and that 𝑥 ∈
𝑉𝑆(𝑟) . Then there exists a unique element 𝑦 ∈ 𝑉𝑆(𝑟) such that 𝑟 = 𝑥𝑦 . 

Note that for 𝑟 = 𝑜, an element 𝑦 such that 𝑥𝑦 = 𝑜 is not necessarily unique. 

 

Definition 2.5 Let 𝑆 be a commutative, 0-cancellative semigroup. For each non-zero element 

𝑟 ∈ 𝑆, the unique element 𝑦 ∈ 𝑉𝑆(𝑟) of 𝑥 ∈ 𝑉𝑆(𝑟) such that 𝑥𝑦 = 𝑟 is called 𝑢(𝑥) .  

 

The following is a small modification of the set 𝑀𝑥 that we defined in Definition 2.1 .  

Definition 2.6 Let 𝑆 be a unital, commutative semigroup with zero 𝑜 . We define the set  

 𝑀𝑜
− = {(𝑎, 𝑏) ∈ 𝑆 × 𝑆: 𝑎 ≠ 𝑜, 𝑏 ≠ 𝑜    𝑎𝑛𝑑    𝑎𝑏 = 𝑜} . 

 We define an equivalence relation ~ on the set 𝑀𝑜
− . It is the equivalence relation generated by 

the relations:   

    1.  (𝑎1𝑎2, 𝑐)~(𝑎1, 𝑎2𝑐) for all 𝑎1, 𝑎2, 𝑐 ∈ 𝑆 with 𝑎1𝑎2𝑐 = 𝑜 and 𝑎1𝑎2 ≠ 𝑜 , 𝑎2𝑐 ≠ 𝑜 ; and  

    2.  (𝑎, 𝑏)~(𝑏, 𝑎) for (𝑎, 𝑏) ∈ 𝑀𝑜
− .  

 It is possible that 𝑀𝑜
− = ∅ . Indeed, take 𝑆 = {𝑜, 𝑒} . Then 𝑀𝑜

− = ∅ . 

Definition 2.7 Let 𝑆 be a unital, commutative semigroup with zero 𝑜 and identity 𝑒. Let 𝐶 ⊂ 𝑀𝑜
− 

be an equivalence class, and let 𝜑:𝐶 → ℂ be a bounded function. Then we define the set 

�̃� = 𝐶 ∪ (𝑆 × {𝑜}) ∪ ({𝑜} × 𝑆), and extend the function 𝜑 to a function �̃�: �̃� → ℂ satisfying  

 �̃�(𝑜, 𝑎) = �̃�(𝑎, 𝑜) = 0    (𝑎 ∈ 𝑆) . (2.3) 

 Then the function 𝜑 is sensible if we have  

 �̃�(𝑎, 𝑏𝑐) + �̃�(𝑏, 𝑎𝑐) = �̃�(𝑎𝑏, 𝑐)  (2.4) 

 whenever (𝑎, 𝑏𝑐) ∈ �̃� or (𝑏, 𝑎𝑐) ∈ �̃� or (𝑎𝑏, 𝑐) ∈ �̃�.  
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Note that �̃� is defined at all three pairs (𝑎, 𝑏𝑐) , (𝑏, 𝑎𝑐), (𝑎𝑏, 𝑐) whenever any one of these pairs 

is in the equivalence class �̃�. E.g. if (𝑎, 𝑏𝑐) ∈ �̃�, then either (𝑎𝑐, 𝑏) ∈ �̃� , and hence (𝑏, 𝑎𝑐) ∈ �̃� 

, or (𝑎𝑐, 𝑏) = (𝑜, 𝑏). 

Note that (2.4) implies that  

 𝜑(𝑎, 𝑏) + 𝜑(𝑏, 𝑎) = �̃�(𝑎𝑏, 𝑒) = �̃�(𝑜, 𝑒) = 0     ((𝑎, 𝑏) ∈ 𝐶) . (2.5) 

The sensible functions on an equivalence class 𝐶 form a linear space, which we call 𝑊𝐶
∗ , and 

they have the uniform norm  

 ‖𝜑‖∞ = sup
(𝑎,𝑏)∈𝐶

|𝜑(𝑎, 𝑏)| . 

The space 𝑊𝐶
∗ is a closed linear subspace of the Banach space ℓ ∞(𝐶) . 

We denote the collection of all such equivalence classes by 𝒞. 

Definition 2.8 Let 𝑆 be a semigroup. Then the convolution product of two elements 𝑓 and 𝑔 in 

the Banach space ℓ 1(𝑆) is defined by the formula:  

 𝑓 ∗ 𝑔 = (∑  𝑠∈𝑆 𝛼𝑠𝛿𝑠) ∗ (∑  𝑡∈𝑆 𝛽𝑡𝛿𝑡) = ∑  {(∑  𝑠𝑡=𝑟∈𝑆 𝛼𝑠𝛽𝑡)𝛿𝑟} . 

 The inner sum will vanish if there are no 𝑠 and 𝑡 in 𝑆 such that 𝑠𝑡 = 𝑟. Clearly, (ℓ 1(𝑆),∗) is a 

Banach algebra; it is called the semigroup algebra of 𝑆.  

 The dual space of 𝒜 = ℓ 1(𝑆) is 𝒜∗ = ℓ ∞(𝑆), where  

 ℓ ∞(𝑆) = {𝑓: 𝑆 → ℂ:    ‖𝑓‖ = sup
𝑠∈𝑆

|𝑓(𝑠)| < ∞} , 

 with the duality given by:  

 ⟨𝑓, 𝜆⟩ = ∑  𝑠∈𝑆 𝑓(𝑠)𝜆(𝑠)    (𝑓 ∈ ℓ
 1(𝑆), 𝜆 ∈ ℓ ∞(𝑆)) . 

 

3. The main result 

In our result we shall establish a relationship between the first-order cohomology group 

ℋ  1(ℓ 1(𝑆), ℓ ∞(𝑆)) , where the semigroup 𝑆 is commutative, 0-cancellative, 𝑛𝑖𝑙 #-semigroup, 

and the direct sum ⊕𝑥≠𝑜∈𝑆 𝑉𝑆
∗(𝑥)⊕𝐶∈𝒞𝑊𝐶

∗ for non-zero elements 𝑥 of 𝑆, where the direct sum 

is in the sense of ℓ ∞.  

Theorem 3.1  Let 𝑆 be a commutative, 0-cancellative, 𝑛𝑖𝑙 #-semigroup. Then  

 ℋ  1(ℓ1(𝑆), ℓ∞(𝑆)) ≅ ⊕
𝑥≠𝑜∈𝑆

𝑉𝑆
∗(𝑥) ⊕

𝐶∈𝒞
𝑊𝐶

∗ , 

 where the sum is an ℓ ∞- direct sum.  

 

Proof We define an isomorphism  

 Θ: ⊕
𝑥≠𝑜∈𝑆

𝑉𝑆
∗(𝑥) ⊕

𝐶∈𝒞
𝑊𝐶

∗ → ℋ  1(𝒜,𝒜∗) 

 as follows: Given bounded families (𝑔𝑥) ∈⊕𝑥≠𝑜∈𝑆 𝑉𝑆
∗(𝑥) and (𝜑𝐶) ∈⊕𝐶∈𝒞𝑊𝐶

∗ , so that 

((𝑔𝑥), (𝜑𝐶)) belongs to the ℓ ∞- direct sum, we define 𝛾: 𝑆 × 𝑆 → ℂ such that  
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 𝛾(𝑠, 𝑡) =

{
 
 

 
 0
𝑔𝑠𝑡(𝑠)
𝜑𝐶(𝑠, 𝑡)

      

𝑖𝑓 𝑠 = 0 𝑜𝑟 𝑡 = 0,
𝑖𝑓 𝑠𝑡 ≠ 0,

𝑖𝑓 𝑠𝑡 = 0  𝑎𝑛𝑑 (𝑠, 𝑡) ∈ 𝐶
  (3.1) 

 

Now set 𝒜 = ℓ 1(𝑆) , and define a map 𝐷:𝒜 → 𝒜∗ by the relation:  

 ⟨𝛿𝑡 , 𝐷(𝛿𝑠)⟩ = 𝛾(𝑠, 𝑡)    (𝑠, 𝑡 ∈ 𝑆) . (3.2) 

 The map 𝐷 extends to a linear map, and 𝐷 is bounded because the functions 𝜑𝐶 and 𝑔𝑥 are 

uniformly bounded. 

Note that 𝐷(𝛿𝑜) = 0 = ⟨𝛿𝑜, 𝐷(𝛿𝑠)⟩ for each 𝑠 ∈ 𝑆 . 

We claim ( essentially following [2, Proposition 4.2]), that 𝐷 is a derivation. 

To prove this, take the elements 𝑢, 𝑣, 𝑡 ∈ 𝑆. We shall show that  

 ⟨𝛿𝑡 , 𝐷(𝛿𝑢𝑣)⟩ = ⟨𝛿𝑡 , 𝑢𝐷(𝛿𝑣) + 𝐷(𝛿𝑢)𝑣⟩ = 0 . 

 That is we shall show that 𝛾(𝑢𝑣, 𝑡) = 𝛾(𝑢, 𝑣𝑡) + 𝛾(𝑣, 𝑢𝑡) . 

In the case where 𝑢𝑣𝑡 = 𝑜, we have to discuss the following two cases: 

Case 1: If at least two of 𝑢, 𝑣 and 𝑡 are zero, so that 𝑢𝑣, 𝑣𝑡 and 𝑢𝑡 are zero, then by using (3.1) 

we have 𝛾(𝑢𝑣, 𝑡) = 𝛾(𝑢, 𝑣𝑡) = 𝛾(𝑣, 𝑢𝑡) = 0 . 

Case 2: If at most one of 𝑢, 𝑣 and 𝑡 are zero, then we have to look at two possibilities. 

Firstly, if each of the pairs (𝑢𝑣, 𝑡), (𝑢𝑡, 𝑣) and (𝑣𝑡, 𝑢) contains a zero element, we still have  

 𝛾(𝑢𝑡, 𝑣) = 𝛾(𝑢, 𝑡𝑣) = 𝛾(𝑣, 𝑡𝑢) = 0 . 

 

Secondly, if at least one of the pairs (𝑢𝑣, 𝑡), (𝑢𝑡, 𝑣) , and (𝑣𝑡, 𝑢) has both elements non-zero, 

say 𝑢𝑣 ≠ 𝑜 ≠ 𝑡, then (𝑢𝑣, 𝑡) must belong to an equivalence class 𝐶. If 𝑢𝑡 ≠ 𝑜, then (𝑣, 𝑢𝑡) ∈ 𝐶 

and, if 𝑣𝑡 ≠ 𝑜, then (𝑢, 𝑣𝑡) ∈ 𝐶, so that by using (2.4), we have  

 𝛾(𝑢𝑣, 𝑡) − 𝛾(𝑢, 𝑣𝑡) − 𝛾(𝑣, 𝑢𝑡) = �̃�𝐶(𝑢𝑣, 𝑡) − �̃�𝐶(𝑢, 𝑣𝑡) − �̃�𝐶(𝑣, 𝑢𝑡) = 0 . 

 

In the case where 𝑢𝑣𝑡 ≠ 𝑜 , we have  

 ⟨𝛿𝑡 , 𝐷(𝛿𝑢𝑣)⟩ = 𝛾(𝑢𝑣, 𝑡) = 𝑔𝑢𝑣𝑡(𝑢𝑣) = 𝑔𝑢𝑣𝑡(𝑢) + 𝑔𝑢𝑣𝑡(𝑣) = 𝛾(𝑢, 𝑣𝑡) + 𝛾(𝑣, 𝑢𝑡) 

 = ⟨𝛿𝑣𝑡 , 𝐷(𝛿𝑢)⟩ + ⟨𝛿𝑢𝑡 , 𝐷(𝛿𝑣)⟩ = ⟨𝛿𝑡 , 𝛿𝑣 ⋅ 𝐷(𝛿𝑢) + 𝛿𝑢 ⋅ 𝐷(𝛿𝑣)⟩ . 

 Thus 𝐷 is a bounded derivation. 

The derivation 𝐷 depends on our choice of the function 𝑔𝑥 ∈ 𝑉𝑆
∗(𝑥) and the function 𝜑𝐶 ∈ 𝑊𝐶

∗ . 
Given bounded families 𝑔𝑥 ∈ 𝑉𝑆

∗(𝑥)    (𝑥 ∈ 𝑆) and 𝜑𝐶 ∈ 𝑊𝐶
∗    (𝐶 ∈ 𝒞) , then we have an 

element denoted by 𝐷[(𝑔𝑥)𝑥∈𝑆, (𝜑𝐶)𝐶∈𝒞] ∈ ℋ
 1(𝒜,𝒜∗) . 

We now consider the map  

 Θ: ⊕
𝑥≠𝑜∈𝑆

𝑉𝑆
∗(𝑥) ⊕

𝐶∈𝒞
𝑊𝐶

∗ → ℋ  1(𝒜,𝒜∗) 

 such that  

 Θ((𝑔𝑥), (𝜑𝐶)) = 𝐷[(𝑔𝑥)𝑥∈𝑆, (𝜑𝐶)𝐶∈𝒞] . 
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 Clearly Θ is linear. 

Suppose that 𝐷[(𝑔𝑥)𝑥∈𝑆, (𝜑𝐶)𝐶∈𝒞] = 0 . Then ⟨𝛿𝑡 , 𝐷(𝛿𝑠)⟩ = 0 for all 𝑠, 𝑡 ∈ 𝑆 , and so 𝑔𝑠𝑡(𝑠1) =
𝜑𝐶(𝑠1, 𝑠2𝑡) = 0 whenever 𝑠 = 𝑠1𝑠2, 𝑡 ∈ 𝑆 and 𝑠𝑡 ≠ 𝑜, 𝑠1𝑠2𝑡 = 𝑜. This shows that Θ is 

injective. 

Finally, to see that Θ is surjective, suppose that 𝐷0:𝒜 → 𝒜∗ is a derivation, and then define 

𝛾(𝑠, 𝑡) = ⟨𝛿𝑡 , 𝐷0(𝛿𝑠)⟩ for all 𝑠𝑡 ≠ 𝑜 in 𝑆. 

We claim that, for 𝑥 ≠ 𝑜 , the function 𝛾 is of form 𝑔𝑥(𝑠) for some 𝑔𝑥 ∈ 𝑉𝑆
∗(𝑥) when restricted 

to the set 𝑀𝑥 = {(𝑠, 𝑡): 𝑠𝑡 = 𝑥}. We also claim that for each 𝐶 ∈ 𝒞, the function 𝛾𝐶 = 𝛾|𝐶 is an 

element of 𝑊𝐶
∗; and in fact 𝛾(𝑠, 𝑡) = 0 if 𝑠 = 𝑜 or 𝑡 = 𝑜. Then clearly that 𝑔𝑥 and 𝜑𝐶 must be 

uniformly bounded otherwise 𝐷0 is not a bounded derivation, so that we have 

𝐷0 = 𝐷[(𝑔𝑥)𝑥∈𝑆, (𝛾𝐶)𝐶∈𝒞] . 

Since 𝐷(𝛿𝑜) = 0, whenever 𝛾(𝑜, 𝑡) = 0 for all 𝑡 ∈ 𝑆. Also for 𝑠 ∈ 𝑆 we have that  

 𝛾(𝑠, 𝑜) = ⟨𝛿𝑜, 𝐷(𝛿𝑠)⟩ = ⟨𝛿1, 𝛿𝑜𝐷(𝛿𝑠)⟩ = ⟨𝛿1, 𝛿𝑜𝐷(𝛿𝑜𝛿𝑠) − 𝛿𝑠𝐷(𝛿𝑜)⟩ = 0 , 

 so that 𝛾(𝑠, 𝑡) = 0 whenever 𝑠 = 𝑜 or 𝑡 = 𝑜. 

Now restrict 𝛾 to 𝑀𝑥 for 𝑥 ≠ 𝑜 . We claim that there exists 𝑔𝑥 ∈ 𝑉𝑆
∗ with 𝛾(𝑠, 𝑡) = 𝑔𝑥(𝑠). We 

do not give proof because this is essentially a repeat of a previous proof. 

Restrict 𝛾 to �̃� ∈ 𝒞. We claim that 𝛾|�̃� is an element of 𝑊𝐶
∗ , and so that 𝛾 is sensible. 

To prove our claim, we shall see that  

 �̃�(𝑎𝑏, 𝑐) = �̃�(𝑎, 𝑏𝑐) + �̃�(𝑏, 𝑎𝑐) (3.3) 

 whenever (𝑎𝑏, 𝑐) ∈ �̃� or (𝑎, 𝑏𝑐) ∈ �̃� or (𝑐, 𝑎𝑏) ∈ �̃�. 

In fact �̃�(𝑢, 𝑣) = ⟨𝛿𝑣 , 𝐷(𝛿𝑢)⟩ , and so, by using (3.3), for 𝑎, 𝑏, 𝑐 ∈ 𝑆 , we have  

 �̃�(𝑎𝑏, 𝑐) = ⟨𝛿𝑐 , 𝐷(𝛿𝑎𝑏)⟩ = ⟨𝛿𝑐 , 𝛿𝑏𝐷(𝛿𝑎) + 𝛿𝑎𝐷(𝛿𝑎)⟩ 

 = ⟨𝛿𝑏𝑐 , 𝐷(𝛿𝑎)⟩ + ⟨𝛿𝑎𝑐 , 𝐷(𝛿𝑏)⟩ = �̃�(𝑎, 𝑏𝑐) + �̃�(𝑏, 𝑎𝑐) . 

 Thus the theorem is proved.            ∎ 

Corollary 3.2  Let 𝑆 be a commutative, 0-cancellative, 𝑛𝑖𝑙 #-semigroup. Then  

 dimℋ  1(ℓ1(𝑆), ℓ∞(𝑆)) = ∑  𝑥≠𝑜∈𝑆 dim𝑉𝑆
∗(𝑥) + ∑  𝐶∈𝒞 dim𝑊𝐶

∗.           ∎ 
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