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ABSTRACT

In this paper we calculate the first-order cohomology group # (£1(S),£*(S)), where S is a
commutative, 0-cancellative, nil *-semigroup.
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1. INTRODUCTION

In [1], Bowling and Duncan investigated the first-order cohomology group H1(£1(S), £ *(S))
and 7€ 1(£1(S), 2 1(S)) for some classes of discrete semigroups, such as Clifford semigroups,
Rees semigroups, and bicyclic semigroups. They also studied the cyclic cohomology in these
cases. For a Banach algebra A and a Banach A-bimodule X, it was shown that it is often
possible to compute £ (A, X), where X is A, or X is A*, with their bimodule products. For
example, in the case of bicyclic semigroups S, it was proved that 71 (£1(S), £ *(S)) is
isomorphic to £ *(N).

In our result we shall establish a relationship between the first-order cohomology group
HLLL(S),£>(S)) , where the semigroup S is a commutative, 0-cancellative, nil #-semigroup,
and the direct sum @ . pes Vs (x) @D ceec Wi for non-zero elements x of S, where the direct sum
is in the sense of £ .

2. Preliminaries

Let S be a semigroup. An element e € S is an identity if es =se =s (s €S). A semigroup
with an identity is a unital semigroup.

Suppose that S does not have an identity. Then we choose e ¢ S, and set S ¥# = S U {e} with
es=se=s (s€S)ande?=-e.ThenS*isasemigroup, called the unitization of S.

Let S be a semigroup, and x,y € S. Then y|x means that x € yS*.

Azeroof Sisanelemento € Swithos =so =02 =0 (s€YS).

Definition 2.1 Let S be a unital, commutative semigroup. Then, for x € S, we define
M, ={(y,z) ESXxS:yz=x} and Vs(x) ={y € S:x € yS}. (2.2)
We call Vs (x) the set of divisors of x.
Note that a, b € Vs(x) whenever ab € Vs(x), and also x € Vg(x) because S has an identity.
The following notion (in a different, additive notation) is given in [2], §4.

Definition 2.2 Let S be a unital commutative semigroup. For each x € S, we define the space
Vs (x) to consist of the bounded functions g: Vs(x) — C satisfying the logarithmic condition
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g(ab) = g(a) + g(b) (2.2)
whenever a,b € S and ab € Vs(x) .
Clearly Vg (x) is a linear space containing the zero function.

Note that Vs(e) = {e} and that V{'(e) = {0} . Also, in the case where S hasa zero o, Vs(0) = S
and V5 (o) = {0} .

Example 2.3 Take S = R* x R* with normal addition. Then S is a unital, commutative
semigroup, and dimVs (x) = 2 for some non-zero x € S .

Take the non-zero element x = (1,1) in S. So that we have Vg(x) =[0,1] x [0,1] . For
(r,s) € Vs(x), define the functions g4, g,: Vs(x) = C by g,(r,s) =r and g,(r,s) =s . Then
91,92 € V5 (x) and, since g, and g, are linearly independent, dimVs (x) > 2. [ ]

Proposition 2.4 Let S be a unital, commutative semigroup and suppose that x € S is a non-zero
element with dimVg (x) = 2 . Then there exists a non-zero g € Vs (x) with g(x) = 0.

Proof Let g, and g, be linearly independent functions in V¢ (x). If g,(x) = 0, then take
g = g1 . Otherwise consider

g2(x)
g1 (%)

Then g € V§'(x) and g(x) = 0. Thus the proposition is proved. ]

9=92— “g1-

Suppose that S is a commutative, 0-cancellative semigroup, that r € S\{o}, and that x €
Vs(r) . Then there exists a unique element y € Vs(r) such that r = xy .

Note that for » = o, an element y such that xy = o is not necessarily unique.

Definition 2.5 Let S be a commutative, 0-cancellative semigroup. For each non-zero element
r € S, the unique element y € V() of x € V() such that xy = r is called u(x) .

The following is a small modification of the set M, that we defined in Definition 2.1 .
Definition 2.6 Let S be a unital, commutative semigroup with zero o . We define the set
My ={(a,b) ESxS:a#o0,b+0 and ab = o}.

We define an equivalence relation ~ on the set M, . It is the equivalence relation generated by
the relations:

1. (aqay,c)~(ay,ayc) forall ay,a,, c € S with a;a,c = o and a;a, # o, a,c # o ; and
2. (a,b)~(b,a) for (a,b) € M, .
It is possible that M, = @ . Indeed, take S = {o,e}. Then M, =@ .

Definition 2.7 Let S be a unital, commutative semigroup with zero o and identity e. Let C ¢ M,
be an equivalence class, and let ¢:C — C be a bounded function. Then we define the set
C=Ccu((Sx{ohu{o}xS),and extend the function ¢ to a function @: C — C satisfying

@(0,a) =P(a,0) =0 (a€Ss). (2.3)
Then the function ¢ is sensible if we have
@(a,bc) + (b, ac) = p(ab,c) (2.4)

whenever (a, bc) € C or (b,ac) € C or (ab,c) € C.
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Note that @ is defined at all three pairs (a, bc) , (b, ac), (ab, c) whenever any one of these pairs
is in the equivalence class C. E.g. if (a, bc) € C, then either (ac, b) € C , and hence (b, ac) € C
,or (ac,b) = (o, b).

Note that (2.4) implies that
o(a,b) + p(b,a) = p(ab,e) = P(o,e) =0 ((a,b)€C). (2.5

The sensible functions on an equivalence class C form a linear space, which we call W; , and
they have the uniform norm

lollc = sup |e(a,b)|.
(a,b)eC

The space W/ is a closed linear subspace of the Banach space £ *(C) .
We denote the collection of all such equivalence classes by C.

Definition 2.8 Let S be a semigroup. Then the convolution product of two elements f and g in
the Banach space £ 1(S) is defined by the formula:

f*g=ses as0s) * Xtes Be6t) = X ARXst=res AsP)0r} -

The inner sum will vanish if there are no s and ¢ in S such that st = r. Clearly, (£1(S),*) is a
Banach algebra; it is called the semigroup algebra of S.

The dual space of A = £1(S) is A* = £ *(S), where
2 = {f:5 > ¢ Ifll = suplf () < oo},
N

with the duality given by:
(fL2) = Zses fF(HA(S) (fF €LH(S),AEL2(S)).

3. The main result

In our result we shall establish a relationship between the first-order cohomology group
HLL(S),£°(S)) , where the semigroup S is commutative, 0-cancellative, nil #-semigroup,
and the direct sum @, es Vs (x) @ ceec We for non-zero elements x of S, where the direct sum
is in the sense of £ ®.

Theorem 3.1 Let S be a commutative, 0-cancellative, nil *-semigroup. Then
HEE(S), L)) = & Vi(x) @ W,
X#0ES Ccec

where the sum is an £ ©- direct sum.

Proof We define an isomorphism
0: @ Vi(x) & Wi->H LA A
cec

X#0€ES

as follows: Given bounded families (g,) E@yxoes Vs (x) and (@¢) EPceec Wi , SO that
((gx), (@¢)) belongs to the £ *- direct sum, we define y: S x S — C such that
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{ 0 ifs=0o0rt=0,
y(st) = { st (s) if st #0, (3.1)
@c(s t) if st=0 and (s,t) €C

\

Now set A = £1(S), and define a map D: A — A* by the relation:
(6., D(8s)) = v(s,t) (s,tES). 3.2)

The map D extends to a linear map, and D is bounded because the functions ¢, and g, are
uniformly bounded.

Note that D(5,) = 0 = (J,, D(6,)) foreachs € S .
We claim ( essentially following [2, Proposition 4.2]), that D is a derivation.
To prove this, take the elements u, v, t € S. We shall show that
(8¢, D(8yp)) = (8¢, uD(8y) + D(8,)v) = 0.
That is we shall show that y(uv, t) = y(u, vt) + y(v, ut) .
In the case where uvt = o, we have to discuss the following two cases:

Case 1: If at least two of u, v and t are zero, so that uv, vt and ut are zero, then by using (3.1)
we have y(uv,t) = y(u,vt) = y(v,ut) =0.

Case 2: If at most one of u, v and t are zero, then we have to look at two possibilities.

Firstly, if each of the pairs (uv, t), (ut, v) and (vt, u) contains a zero element, we still have

y(ut,v) =y, tv) =y, tu) =0.

Secondly, if at least one of the pairs (uv, t), (ut,v) , and (vt,u) has both elements non-zero,
say uv # o # t, then (uv, t) must belong to an equivalence class C. If ut # o, then (v,ut) € C
and, if vt # o, then (u, vt) € C, so that by using (2.4), we have

Yy, t) =y, vt) —y(,ut) = gc(uv, t) — c(u, vt) — Pc(v,ut) = 0.

In the case where uvt # o, we have
(66, D(8up)) = y(uv, ) = Gupe (UV) = Gupe (W) + Guwe(v) = v (w, vt) +y(v, ut)
= Oy, D(6y)) + (Sy, D(6,)) = (64, 6y - D(8y) + 6y, - D(6y)) -

Thus D is a bounded derivation.

The derivation D depends on our choice of the function g, € Vs (x) and the function ¢, € W, .
Given bounded families g, € V5 (x) (x€S) and ¢, € W; (C €C), then we have an
element denoted by D[(gy)xes, (©c)cec]l € H (A, A*).

We now consider the map
0: @ Vi(x) ® Wi - H (A A
X+0ES cec

such that
G)((gx)' (‘Pc)) = D[(gx)xes: ((pC)CEC] .
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Clearly © is linear.

Suppose that D[(gy) xes, (©c)cec] = 0. Then (6, D(8s)) = 0 forall s,t € S, and so g (s1) =
@c(51,52t) = 0 whenever s =s;s,,t €S and st # o, s;S,t = 0. This shows that © is
injective.

Finally, to see that © is surjective, suppose that Dy: A — A™ is a derivation, and then define
y(s,t) = (6, Dy(d5)) forall st #o0in S.

We claim that, for x # o , the function y is of form g, (s) for some g, € Vg (x) when restricted
to the set M,, = {(s,t): st = x}. We also claim that for each C € C, the function y, = y|C is an
element of W;; and in fact y(s,t) = 0 if s = o or t = 0. Then clearly that g, and ¢, must be
uniformly bounded otherwise D, is not a bounded derivation, so that we have

Dy = D[(gx)xes (Vc)ceel -
Since D(6,) = 0, whenever y(o,t) = 0 forall t € S. Also for s € S we have that
¥(s,0) = (86, D(85)) = (81,800 (85)) = (61,8,D(8065) — 6sD(8,)) = 0,
so that y(s,t) = 0 whenevers = oort = o.

Now restrict y to M, for x # o . We claim that there exists g, € Vg with y(s,t) = g,(s). We
do not give proof because this is essentially a repeat of a previous proof.

Restrict y to € € €. We claim that y|C is an element of W/ , and so that y is sensible.
To prove our claim, we shall see that
y(ab,c) = ¥(a,bc) + 7(b,ac) (3.3)
whenever (ab,c) € C or (a,bc) € C or (c,ab) € C.
In fact 7 (u, v) = (8,, D(6,)) , and so, by using (3.3), for a, b, c € S , we have
7(ab,¢) = (8¢, D(6ap)) = (6, 65D (8a) + 62D (64))
= (8pc, D(84)) + (8ac, D(6p)) = 7(a, be) +7(b, ac) .
Thus the theorem is proved. [ |

Corollary 3.2 Let S be a commutative, 0-cancellative, nil #-semigroup. Then

dim3 1(£1(S), £°(5)) = Zxzoes dimVs (x) + Xcee dimW¢. u
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