Detecation of foodborne microbes in distrbuted eggs within the city of Misurata, Libya

Rasha R. Shaaib¹; Ibrahim A. Teka²; Khdija M. Ahmed³

¹ Misurata Academy for Postgraduate Studies

² 'Medical laboratory department / Medical Technology College – Misurata

³ Microbiology Department / Faculty of Medicine – Sebha University

For correspondence:

teka42@hotmail.com

Article information	Abstract					
Key words	Salmonella and Shigella is one of the most important foodborne pathogens					
prevalence, foodborne,	worldwide; This study was aimed to investigate the presence of pathogenic					
Salmonella, Shigella,	Salmonella and Shigella isolated from eggs; then screening isolates for stn					
pathogens, eggs,	gene in Salmonella and invC gene in Shigella using PCR technique. A total of					
Misurata- Libya.	50 samples of distributed eggs were randomly collected from stores,					
Received 26 1 2023, Accepted 05 2 2023,	supermarkets and street vendors around the city. Two <i>Salmonella</i> isolates were found in egg samples 4% (2/50) and one <i>Shigella</i> was found in egg sample 2% (1/50). All <i>Salmonella</i> isolates were positive for the stn gene and <i>Shigella</i> was positive for the invC gene. The result confirmed that the transfer of these organisms through the food chain poses imminent danger to the consumer and concluded that there is a need for continuous surveillance of eggs especially the locally produced ones, suggested using PCR to minimize the possibility of human infections with <i>Salmonella</i> and <i>Shigella</i> .					

I. INTRODUCTION

Eggs are nutritious foods and they form an important part of the human diet. However, they are perishable due to improper handling; this food is one the main sources of foodborne pathogens due to high contents of proteins and fat which represent an enriched media for growth and multiplication of pathogens (1).

Several pathogenic bacteria have been isolated from these foods are sometimes found on eggshells and can survive or grow in the edible liquid content (yolk and white) of eggs. Contamination of eggs with these microorganisms can affect egg quality, which may lead to spoilage and pathogen transmission. This may induce food-borne infection or intoxication to consumers (2; 3).

However, the vast majority of eggassociated human illnesses are attributed to bacteria of the genus Salmonella and Shigella (4). **Globally Salmonella** and Shigella species remain major contributors to acute enteric infections (5). They are closely related enteric pathogens belonging to the family Enterobacteriaceae and found are naturally in the environment, humans and food (6).

Contamination of foods, especially the eggs, with *Salmonella spp.* and *Shigella* spp. is a major concern for public health.

Therefore the use of a rapid method for Salmonella detection in this important food commodities is urgently needed, Established conventional methods to detect and identify Salmonella are time include consuming and selective enrichment and plating followed by biochemical tests (7; 8). On the other hand, polymerase chain reaction (PCR) is a rapid and reliable method for detection and identification of foodborne pathogens such as Salmonella as a complementary to conventional culture (9; 10).

Several genes have been used to detect *Salmonella* and *Shigella* in natural environmental samples as well as food and faecal samples. *stn* and *invC* gene were a virulence gene. The *stn* gene contains sequences unique to *Salmonella spp.* (11), and *invC* gene contains sequences unique to Shigella spp. (12).

In this study we investigate the presence of pathogenic *Salmonella* and *Shigella* isolated from eggs; then screening isolates for *stn* gene in *Salmonella* and *invC* gene in *Shigella* using PCR technique.

II. MATERIALS AND METHODS

Sample collection

A total of 50 samples of distributed eggs, were collected from randomly selected from stores, supermarkets and street vendors in Misurata, Libya. The egg samples were purchased like consumer and immediately transferred to the laboratory for microbial investigation.

Isolation of bacteria

Salmonella strains were isolated according to the standard ISO-6579 method described by (International Organization for Standardization 1993) (13); with some modification to detection.

Identification of Isolates

Pure colonies of all the isolates were identified using colony morphology, Gram staining, TSI agar test (Biolab, Merck - South Africa), and API-10s test kit (bioMerieux, Inc., France).

Polymerase chain reaction (PCR) for *stn* and *inv*C gene

The positive sample for *Salmonella* and *Shigella* were tested for the presence of virulence associated *stn* gene and *invC* gene.

DNA extraction

Template DNA of samples incorporated in PCR reactions was prepared by boiling and snap chill method (14). Briefly, the samples were rescued from frozen and grown in 10 ml Luria Bertani (LB) broth (Sigma) and incubated at 37°C for 24 hrs. Thereafter, one ml of the test culture was taken in a 1.5 ml tube and centrifuged (Eppendorf Minicentrifuge MiniSpin) at 8000 rpm for 10 min. The pellet was washed twice with sterile saline solution and finally re-suspended in 300 µl sterilized DNAse and **RNAse-free** milliO water (Millipore, USA). The suspension was vortexed and heated for 10 min and then were immediately kept on ice. Suspensions were centrifuged at 12000 rpm for 10 min and 3µl of the supernatant was used as a DNA source in PCR mixtures.

Primers set and PCR amplification program

The *Salmonella* specific primers, Stn P1 and Stn M13 (11) have respectively the following nucleotide sequence based on the *stn* gene of *Salmonella*, The *Shigella* specific primers, SgenDF1and SgenDR1 (12) have respectively the following nucleotide sequence based on the *stn* gene of *Salmonella*, as shown in table1, The primers sets of *InvA* genes in this study was synthesized from Invitrogen (USA).

Table 1: Primers used in the study

Primer	Primer Sequence (5'→3')	Target gene		
Stn P1	TTG TGT CGC TAT CAC TGG CAA CC	Salmonella (stn)		
Stn M13	ATT CGT AAC CCG CTC TCG TCC	(<i>sin</i>) 617bp		
SgenDF 1	TGC CCA GTT TCT TCA TAC GC	Shigella (InvC)		
SgenDR 1	GAA AGT AGC TCC CGA AAT GC	(<i>InvC</i>) 875bp		

ion mixture contained 2.5µl of DNA solution from the procedure above, 5 units of GoTaq reaction buffer (Promega Corp., USA), 1 x PCR reaction buffer, 1.5mM MgCl, 10mM PCR nucleotide mix (Promega Corp.,

USA), and 1.5µM DNA primer in a final volume of 50µl.

The cycle of amplification conditions were as follow: An initial incubation at 95° C for 2min. Followed by 30 cycles for another three steps: denaturing (95°C, 30s), annealing (50°C, 30s), primer extension (72°C, 45s). This was followed by final extension temperature at 72°C for 7min.

Electrophoresis of PCR products

Amplification product sizes were verified by electrophoresis of 10μ l samples in a 1.0% agarose (sigma) TBE gel with syber safe (promega).

III. RESULTS AND DISCUSSION

Food is a basic need to support human survival, so food security is an important and increasing focus of attention. Food commodities that are often related to food poisoning cases are eggs, this is because eggs are a good medium for growth of bacteria (15).

In this study a total of 50 eggs were examined for the presence of Salmonella and Shigella by cultural examination. After incubation, two samples (4%) of eggs were found to be positive for Salmonella and One sample (2%) from a total number of examined samples as level shown in table2. The of contamination in this study is lower than a study conducted in Nigeria (16), and higher than a study conducted in Turkey (17).

	Total	Cultural examination for					
Sample type		Salmonella		Shigella			
		+ve	-ve	+ve	-ve		
Eggs	50	2 (4%)	48	1 (2%)	49		
Shigella in eggs							

The higher prevalence of *Salmonella* and *Shigella* spp. possibly due to lack of vaccine and differences in prevention and control strategies, and possibly due to environmental contamination Thus, this study reports the contamination of contents of eggs by *Salmonella* and *Shigella* species but quantification of

such contamination should be further investigated.

In order to confirm the former results, PCR assay was carried out for the detection of the *stn* gene and *invC* gene using a specific primer to confirm the presence of *Salmonella* and *Shigella* isolated from eggs samples.

The PCR which performed for *stn* (617bp fragment) gene resulted positive amplifications in all Salmonella isolates (100%) as shown in (Figure 1)

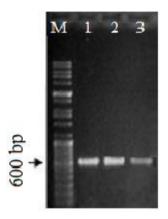


Figure 1: PCR amplification of *stn* gene for *Salmonella* samples at correct size of 617bp

Lane M: Molecular ladder, Lane 1 & 2: represents *salmonella* sample, lane 3: *stn* gene positive control

The PCR which performed for *invC* (617bp fragment) gene resulted positive amplifications in *Shigella* isolates (100%) as shown in (Figure 2)

Thus, this study support other research that recommendation to use *stn* gene as target to dedicated *salmonella* spp , and use *inv*C gene as a target to detection *Shigella* spp. (12; 18); meanwhile confirmed that the transfer of these organisms through the food chain poses imminent danger to the consumer.

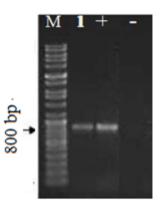


Figure 2: PCR amplification *of inv*C gene for *Shigella* samples at correct size of 875bp

Lane M: Molecular ladder, Lane 1: represents *Shigella* sample, Lane +: *inv*C gene positive control, Lane -: *inv*C negative control

IV. CONCLUSION

The detection of Salmonella and Shigella in eggs demonstrates that there is source of contamination in farms this may be referred to hen's droppings and contaminated litter. Therefore, it is important to apply new techniques and educate those in direct contact with the hens in order to control Salmonella and Shigella transmission in farms; as well as, using an efficient and rapid detection method to monitor and control Salmonella and Shigella is of great significance for ensuring food safety.

REFERENCES

- Msallam, A. K. (2008). Occurrence of Salmonella spp. in Hens Eggs and their Environment in Selected Farms in Gaza Strip. Islamic University–Gaza .
- Whiley, H., & Ross, K. (2015). Salmonella and eggs: from production to plate. International journal of environmental research and public health, 12(3), 2543-2556.

- Munoz, A., Dominguez-Gasca, N., Jimenez-Lopez, C., & Rodriguez-Navarro, A. B. (2015). Importance of eggshell cuticle composition and maturity for avoiding trans-shell *Salmonella* contamination in chicken eggs. Food Control, 55, 31-38.
- 4. Guard-Petter, J. (2001). The chicken, the egg and *Salmonella* enteritidis. Environmental microbiology, 3(7), 421-430.
- Jousilahti P, Madkour SM, Ambrechts T, Sherwin E (1997) Diarrheal disease morbidity and home practices in Egypt. Public Health 111:5-10.
- Jun W Li, Xiu Q Shi, Fu H Chao, Xin W Wang, Jin L Zheng, Nong S (2004) A study on detecting and identifying enteric pathogens with PCR. Biomedical and Environ Sc 17:109-120.
- 7. Burtscher, C., P.A. Fall. P.A. Wildererand S. Wuertz, (1999). Detection of Salmonella spp. and Listeria monocytogenes in suspended organic waste by nucleic acid extraction and PCR. Appl. Environ.
- Bennasar, A., G. de Luna, B. Cabrerand J. Lalucat, (2000). Rapid identification of Salmonella typhimurium, S. enteritidis and S. virchowisolates by polymerase chain reaction based fingerprinting methods. Int. Microbiol., 3: 31-38.
- Chiu, C.-H. & Ou, J. T. (1996). Rapid identification of *Salmonella* serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol 34, 2619–2622.
- Rodulfo, H., M. De Donato, J. Luiggi,
 E. Michelli, A. Millánand M. Michelli,
 (2012). Molecular characterization of

Salmonella strains in individuals with acute diarrhea syndrome in the state of Sucre, Venezuela. Revista da SociedadeBrasileira de Medicina Tropical, 45: 329-333.

- 11. Rahn, K., De Grandis, S., Clarke, R., McEwen, S., Galan, J., Ginocchio, C., Gyles, C. (1992). Amplification of an invA gene sequence of *Salmonella* typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Molecular and cellular probes, 6(4), 271-279.
- Murugkar, H., Rahman, H., & Dutta, P. (2003). Distribution of virulence genes in *Salmonella* serovars isolated from man & animals. Indian Journal of Medical Research, 117, 66.
- 13. International Organization for Standardization 1993 (Iso 1993)
- 14. Nagappa, K., Tamuly, S., Saxena, M., & Singh, S. (2007). Isolation of *Salmonella* Typhimurium from poultry eggs and meat of Tarai region of Uttaranchal.
- 15. Blumenthal, D. (1990). From the chicken to the egg. *FDA Consumer*, pp. 7-10.
- Nnagbo, P.A. and Nkwoemeka, N.E. (2018). Prevalence of Salmonella and Shigella species in Chicken Eggs from Poultry Farms in Owerri, Nigeria. International Journal of Innovative Science, Engineering & Technology.
- Cetinkaya, F., Cibik, R., Soyutemiz, G. E., Ozakin, C., Kayali, R., & Levent, B. (2008). *Shigella* and *Salmonella* contamination in various foodstuffs in Turkey. Food Control, 19(11), 1059-1063.

18. Ojha, S. C., Yean Yean, C., Ismail, A., & Banga Singh, K. K. (2013). A pentaplex PCR assay for the detection and differentiation of Shigella species. *BioMed* research international, 2013.