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REVIEW OF CALCULATING INVARIANT 

RINGS OF SYMMETRIC GROUPS BY  

USING MAXIMA 
 

Abstract— In this article, we survey some elementary techniques for understanding the invariant theory of finite groups 

with emphasis on symmetric groups, and give an overview of a package for WxMaxima, called sym which contains tools 

for writing invariants in terms of many bases.  
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I. INTRODUCTION 

     In commutative algebra, the invariant theory of finite 

groups is a very classical subject. The origins of invariant 

theory go  back to Lagrange (1773-1775) and Gauss 

(1801). Today, it is an important branch of mathematics 

which related to a variety of other fields such as algebraic 

geometry and representation theory.  

     The book [7] caused a broad interest in this area. Over 

the last three decades, computational invariant theory has 

made important progress. One of the important goals to 

find an algorithm for computing generators of the 

invariant ring, which was extremely difficult in some 

cases. Several important special cases have been 

investigated and all questions about them have been 

answered.  

   There are software implementations of many algorithms 

(of finding generators of an invariant ring) in computer 

algebra systems (as Maxima, Magma, Macaulay2 and 

Maple). The description of the functions that are related 

to the invariant theory in Maxima is not obvious, so we 

decide to study some of them in this paper. 

     We include some basics of invariant theory in this 

section as well as it will be required later. We refer 

to[1,2,5,6,7], from which we gather the statements 

provided in this section, for further insight into this 

fascinating subject. 

      Let G be a matrix group, a subgroup of  the general 

linear group GL(𝔽n) of all invertible n × n matrices. Fix 

a field 𝔽  of characteristic zero, X = {x1, … , xn}  and the 

set 𝔽[X] ≔ 𝔽[x1, … , xn]  is the ring of multivariate 

polynomials in variables x1, … , xn with coefficients in the 

field 𝔽.  

    Given f1, … , fm ∈ 𝔽[X] , the subset of 𝔽[X]  that is 

consisting of all polynomial expressions in f1, … , fm with 

coefficients in 𝔽 is denoted by 𝔽[f1, … , fm]. 

    We illustrate some fundamental concepts and results in 

the non-modular invariant theory of finite groups with 

examples.  

     The group G acts naturally on the space 𝔽n of column 

matrices by left multiplication, and this action extends to 

the ring 𝔽[X] as follows: Let A = (aij) ∈ G, this matrix 

transforms polynomials in  𝔽[X] via 

xi ↦ ai1x1 + ai2x2 + ⋯ + ainxn,     i = 1, … , n. 

    Let the symmetric group of degree n be 𝔖n. Note that 

the group 𝔖n can be identified as subgroup of the group 

GL(𝔽n). Then, the previous action induces an action of 

𝔖n on 𝔽[X] as follows: If σ ∈ 𝔖n and f ∈ 𝔽[X], then 

σf(x1, … , xn): = f(xσ(1), … , xσ(n)).  
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     A polynomial f ∈ 𝔽[X] is a G-invariant(or a symmetric 

polynomial in the case G ⊆ 𝔖n ) if gf = f for all 𝑔 ∈ 𝐺 . 

Also, the set 

𝔽[𝑋]𝐺 : = {𝑓 ∈ 𝔽[𝑋]|𝑔𝑓 = 𝑓 ∀ 𝑔 ∈ 𝐺} 

is the set of G-invarinats. This set is a subring of 𝔽[X], as 

the sum of two invariants is again an invariant, and same 

for the product. 

Example 1: For n = 3, the polynomial p(x, y, z) = x2 +

y2 + z2 is invariant under 𝔖3 but not under GL(ℝ3) as 

[
1 0 1
2 2 0
1 −1 1

] p = ( x + z)2 + (2x + 2y)2 + (x − y + z)2

≠ p. 

Example 2: Consider the subgroup H  of GL(ℂ2)  that 

generated by 

h = [
i 0
0 −i

] ;    i2 = −1. 

A polynomial f(x, y) = ∑ ajkxjyk
j,k ∈ ℂ[x, y]  is a H -

invariant if and only if  it is invariant under the action of 

h, which means f(x, y) = f(ix, −iy), and that is equivalent 

to (i)j+k(−1)k = 1. The last equation is satisfied when; k 

even and 4 is a factor of  j + k, k odd and  j + k = 2r 

where r is odd. Thus we can write f(x, y) as a polynomial 

in x4, xy  and y4 . This proves that ℂ[x, y]H =

ℂ[x4, xy, y4]. 

     Due to the fact that G  acts on 𝔽[X]   by linear 

transformations, a polynomial is invariant if and only if 

its homogeneous components are invariant. Hence, the 

action of G on 𝔽[X] is graded (Recall that an algebra A =

⊕i Ai is graded if the multiplication satisfies AiAj ⊂

Ai+j). Therefore   

𝔽[X]G =⊕d=1
∞ 𝔽[X]d

G 

where 𝔽[X]d
G  is the vector space of homogeneous 

invariants of degree d. 

    Invariant theory has two basic questions to answer 

about the ring 𝔽[X]G : Can we find finitely many 

homogeneous invariants that are generating the algebra 

𝔽[X]G, and in how many ways can an invariant be written 

in terms of these generators. For finite groups acting on a 

ring of polynomials with coefficient in an algebraically 

closed field of characteristic zero, both questions have 

been answered completely. See [1,2,5,7] for more 

information 

     Many algorithms can be found for the computation of 

invariant rings of finite groups, see [7,5]. Some of these 

methods do not work for  an arbitrary ground field. 

Today, there exist  performance implementations of some 

of them within the computer system Maxima. This paper 

includes both the source code as well as explanation of an 

algorithm for writing a symmetric polynomial in terms of 

the elementary functions. 

II. THE INVARIANT THEORY OF THE 

SYMMETRIC GROUPS 

     In this  section, we  review two bases for the ring 

𝔽[X]𝔖n  and explain an algorithm for writing any 

symmetric polynomial in terms of these generators by 

examples. 

     Define the kth elementary symmetric polynomial as 

ek ≔ ek(x1, … , xn) = ∑ xi1
xi2

⋯ xik

1≤i1<i2<⋯<ik≤n

,  

1 ≤ 𝑘 ≤ 𝑛 . For example, e1 = x1 + ⋯ + xn  and en =

x1x2 ⋯ xn . Alternatively, the polynomial ek  can be 

defined as the coefficient of tn−k  in the function 

∏ (t + xi)1≤i≤n . As ek ∈ 𝔽[X]𝔖n  for each k, hence every 

polynomial expression in the elementary symmetric 

polynomials is symmetric.  

Theorem 1 [ 7, theorem 1.1.1 ]( Main theorem on 

symmetric polynomials): 

𝔽[X]𝔖n = 𝔽[e1, … , en]. 

     The proof just given is due to Gauss, who needed the 

properties of symmetric polynomials for his second proof 

(dated 1816) of the fundamental theorem of algebra. Note 

that the proof of theorem 1 gives an algorithm for writing 

a symmetric polynomial in terms of  e1, … , en . The 

following examples of how this algorithm works. 

Example 3: Consider the function f(x, y) = x6 + y6. The 

leading term of f is x6 = (e1(x, 0))
6
, then following the 

procedure of the proof of the theorem: 
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x6 + y6 − (e1(x, y))
6

= x6 + y6 − (x + y)6

= −(6x5y + 15x4y2 + 20x3y3

+ 15x2y4 + 6xy5). 

Dividing by −e2(x, y) = −xy we obtain  

6x4 + 15x3y + 20x2y2 + 15xy3 + 6y4. 

Now the leading term is 6x4 = 6(e1(x, 0))
4
, and thus 

6x4 + 15x3y + 20x2y2 + 15xy3 + 6y4 − 6e1
4

= −(9x3y + 16x2y2 + 9xy3)

= −e2(9x2 + 16xy + 9y2). 

Then one easily sees that 

9x2 + 16xy + 9y2 = 9(x + y)2 − 2xy = 9e1
2 − 2e2. 

Going backward, we have  

x6 + y6 = e1
6 − e2(6e1

4 − e2(9e1
2 − 2e2))

= e1
6 − 6e1

4e2 + 9e1
2e2

2 − 2e2
3. 

Remark: The proof also shows that if the total degree(the 

maximum of the total degrees of its monomial 

summands) of a symmetric polynomial f(x1, … , xn)  is 

less than or equal n , then the expression for 

f(x1, … , xn−1, 0)  in terms of ei(x1, … , xn−1)  gives the 

correct expression for f(x1, … , xn)  in terms of 

ei(x1, … , xn). 

Example 4: Express the function 

f(x1, … , xn) = x1
3 + ⋯ + xn

3 + 2 ∑ xixj
2

i≠j

 

in terms of the elementary symmetric polynomials. 

    The induction of n and the previous remark indicate 

that the general formula will be found by finding the 

formula for n = 3, since the total degree is 3. Following 

the procedure of the proof of the theorem, we have 

x1
3 + x2

3 + 2x1x2
2 + 2x2x1

2 − (x1 + x2)3

= −(x1
2x2 + x1x2

2) = −e2e1. 

So we obtain  

x1
3 + x2

3 + 2x1x2
2 + 2x2x1

2

= (e1(x1, x2))3 − e2(x1, x2)e1(x1, x2) 

Passing to three variables and consider 

x1
3 + x2

3 + x3
3 + 2 ∑ xixj

2

i≠j

− (e1(x1, x2, x3))
3

+ e2(x1, x2, x3)e1(x1, x2, x3)

= −x1x2x3. 

Thus with three variables,  

x1
3 + x2

3 + x3
3 + 2 ∑ xixj

2

i≠j

= (e1)3 − e2e1 − e3. 

By the remark above, this shows that for arbitrary n ≥ 3 

we have 

x1
3 + ⋯ + xn

3 + 2 ∑ xixj
2

i≠j

= (e1)3 − e2e1 − e3. 

    There are other common homogeneous bases for 

𝔽[X]𝔖n , the set {pk}k=1
n  is one of them, defined as 

follows: 

pk ≔ pk(x1, … , xn) = ∑ xi
k

1≤i≤n   (the k-th power sum 

polynomial). 

Theorem 2: If 𝔽  is a field containing the rational 

numbers ℚ, then  

𝔽[X]𝔖n = 𝔽[p1, … , pn] 

Proof: By using theorem 1, it suffices to prove that the 

elementary polynomials are polynomials in p1, … , pn . 

From the Newton identities, which state that: 

kek = ∑(−1)i−1ek−ipi,

k

i=1

   𝑛 ≥ 𝑘 ≥ 1. 

Since ℚ is contained in 𝔽, we can divide by the integer k. 

Then the elementary may be expresses recursively in 

terms of the power sums as: 

ek =
1

k
∑(−1)i−1ek−ipi,

k

i=1

           n ≥ k ≥ 1.   

Note that e1 = p1.                                                          □ 

Example 5: From the previous theorems, we have  

ℝ[x, y, z]𝔖3 = ℝ[x + y + z, xy + xz + yz, xyz]

                     = ℝ[𝑥 + 𝑦 + 𝑧, 𝑥2 + 𝑦2 + 𝑧2, 𝑥3 + 𝑦3 + 𝑧3].
 

III. THE MAXIMA PACKAGE SYM 

     Maxima is a free computer algebra system whose 

development started in 1968. WxMaxima (graphical user 

interface for the Maxima) allows one to use all 

of Maxima’s functions. For more details, see [2]. 

     We will show how to use sym package in WxMaxima. 

Sym is a package for working with symmetric 

polynomials. It was written by Annick Valibouze for 
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Macsyma-Symbolics, she used algorithms that are 

described in [8,9,10,11].  

    Maxima has several functions which can be used for 

studying a symmetric polynomial. These are described in 

the Maxima manual, Section 32. We will present some 

examples of the use of some of these functions. Some of 

them can be used for writing a symmetric polynomial as a 

polynomial expression in terms of  e1, … , en or in terms 

of  p1, … , pn, and for changing bases. 

   Let f(x1, … , xn)  be a symmetric polynomial which is a 

homogeneous of degree d ≠ 0 . This section gives 

examples of the following Maxima functions:  

i). elem( [n],
1

n
f(x1, … , xn), [x1, … , xn] ):  decomposes 

the polynomial f  in terms of the elementary 

symmetric functions e1, … , en.  

ii). pui([n],
1

n
f(x1, … , xn), [x1, … , xn]):  decomposes the 

polynomial f in terms of the polynomials  p1, … , pn.  

iii). ele2pui( n, [en] ): implements passing from the 

elementary symmetric functions e1, … , en  to the 

power sums from 0 to n.  

iv). ele2pui( n, [m, e1] ): restricting the answer of 

elem2pui(n, [en]) from n to m. 

v). pui2ele(n, [en]) and pui2ele(n, [m, e1]): go from the 

power sums to the elementary symmetric functions. 

Similar to ele2pui. 

vi). multi_elem(

[ [m, e1, … , em], [m′, g1, … , gm′] ], f, [[x1, … , xm],

[xm+1, … , xn]]) : decomposes a multi-symmetric 

polynomial m̂f  in terms of the elementary 

symmetric functions ei's and gi's and m̂ is a constant 

is depended on the values of m and m′, where m′ =

n − m, f ∈ 𝔽[x1, … , xm]𝔖m  and f ∈

𝔽[xm+1, … , xn]𝔖n−m. 

    Maxima has more functions which related to other 

types of symmetric functions as monomial symmetric 

functions, complete homogeneous symmetric functions 

and Schur functions. Also, the function ratsimp( ) is 

usually used after the previous functions to obtain a 

simpler expression for the expression between the 

brackets. 

     We conclude this paper with examples that showing  

how the previous Maxima functions work. To begin, the 

packages sym, facexp and compile should be loaded. 

    The function elem:  

(%i1) elem([2],x^4+y^4,[x,y]); 

(%o1)   e1(e1(2e1
2 − 2e2) − 2e1e2) − 2(2e1

2 − 2e2)e2 

(%i2) ratsimp(%/2); 

(%o2)   2e2
2 − 4e1

2e2 + e1
4 

(%i3) elem([3],x^4+y^4+z^4,[x,y,z]); 

(%o3)    e1(3e3 − 3e1e2 + e1(3e1
2 − 3e2)) + 9e1e3 −

2(3e1
2 − 3e2)e2 

(%i4) ratsimp(%/3); 

(%o4)  4e1e3 + 2e2
2 − 4e1

2e2 + e1
4 

Similarly, 

(%i5) pui([2],x^4+y^4,[x,y]); 

(%o5)   2p1(p1p2 −
p1(p1

2−p2)

2
) − (p1

2 − p2)p2 

(%i6) ratsimp(%/2); 

(%o6)   
p2

2+2p1
2p2−p1

4

2
 

     To change between bases, we can use for example: 

 (%i7) ele2pui(3,[e3]); 

(%o7)   [4, e1, e1
2 − 2e2, 3e3 − e1e2 + e1(e1

2 − 2e2)] 

Which means  

p1 = e1,   p2 = e1
2 − 2e2,

p3 = 3e3 − e1e2 + e1(e1
2 − 2e2) 

    Finally, the use of the function multi_elem: 

(%i9)multi_elem([[2,e1,e2],[2,g1,g2]],(x^2+y^2)*(a*b), 

[[x,y],[a,b]]); 

(%o9)   2(e1
2 − 2e2)g2 

     Modern computer algebra and computational methods 

have largely expanded in the last years. However, much 

progress is still needed to enlarge the spectrum of 

applications and make them easier to use with different 

types of groups 
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