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A Comparison of the Pre-test and Shrinkage 
Estimators for a Finite Population Mean in a 

Bivariate Normal Distribution with Equal 
Marginal Variances Under Distrust 

Coefficient  

Abstract— The estimation of the mean of a bivariate normal population with unknown variance is considered in this 
paper when uncertain non-sample prior information on the value of the mean and a coefficient of distrust on the null 
hypothesis is available. Alternative estimators are defined to incorporate both the sample as well as the non-sample 
information in the estimation process. Some of the important statistical properties of the restricted, preliminary test, 
and shrinkage estimators are investigated. 
The performances of the estimators are compared based on the criteria of unbiasedness and mean square error in 
order to search for a "best” estimator. Both analytical and graphical methods are explored. There is no superior 

estimator that uniformly dominates the others.  
In addition, the results showed that neither the preliminary test estimator nor the shrinkage estimator dominates one 
another except for large dimensions. However, if the non-sample information regarding the value of the mean is 
close to its true value, the shrinkage estimator over performs the rest of the estimators. 
 
 
Keywords: Uncertain non-sample prior information; maximum likelihood, restricted, preliminary test shrinkage 
estimators. 

 

I. INTRODUCTION 

The classical estimators of unknown parameters are based 
completely on the sample data, and ignore any other kind 
of non-sample prior information. However, it is a natural 
expectation that the quality of the estimators may 
improve if non sample prior information is incorporated 
in the estimation of the parameters. Any such estimators 
that combine both sample and non-sample prior 
information are likely to perform better that the exclusive 
sample based estimator under specific statistical criterion. 
A number of estimators have been introduced in the 
literature that, under particular situation, over performs 
the classical exclusive sample based estimators when 
judged by criteria such as the mean square error and 
square error loss function (Khan and Saleh, 2001). 

         There have been many studies in the area of 
improved estimators following the seminal work of 
Bancroft (1944). later Han and Bancroft (1968). They 
developed the preliminary test estimator that uses 
uncertain non-sample prior information in addition to 
sample information. Stein (1956) introduced the Stein 
rule (shrinkage) estimator for multivariate normal 
population that dominates the usual maximum likelihood 
estimator (MLE) under quadratic loss function. 

       In a series of papers Saleh and Sen (1978, 1985) 
explored the preliminary test approach to Stein-rule 
estimation under nonparametric set up. Many authors 
have contributed to this area, notably Judge and Bock 
(1978), Stein (1981), Matta and Casella (1990),Khan 
(1998), Later Khan and Saleh (1995, 1997) investigated 
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the problem for a family of Student-t populations. 
Recently, Khan, S and  Saleh, A.K.Md.E. (2001), on the 
comparison of pre-test and Shrinkage estimator for the 
univariate normal mean, have used the coefficient of 
distrust 1d0   , a measure of degree of lack of trust 
on the null hypothesis, in the estimation of parameters. 
This coefficient of distrust reflects on the reliability of the 
prior information. Xianchao (2016)  developed shrinkage 
estimation in family of distributions with quadratic 
variance function based on two specific cases: the 
location-scale family and the natural exponential families. 
It was showed that shrinkage estimator was 
asymptotically optimal in its own class and superior 
performance compared to the classical empirical Bayes 
and many other competing shrinkage estimators.  
Later on, Mathenge (2019)  considered two shrinkage 
estimators of rates based on Bayesian methods to 
estimate the mean of the multivariate normal distribution 
in when the variance was unknown using the chi-square 
random variable. Was found that the limits of the 
maximum likelihood estimator based on the two risk 
ratios forms obtained when n and p tend to infinity. 
Recently, Hamdaoui et al ( 2020)  considered two forms 
of shrinkage estimators of the mean of a multivariate 
Normal random variable in the Bayesian case when the 
variance is unknown, are showed that the Bayes and 
shrinkage estimators were minimax n and p were finite. 
This paper mainly focuses on the estimation of the finite 
population mean, from a bivariate normal distribution 
with equal marginal variances with uncertain non-sample 
prior information on the value of the mean; this can be 
expressed into the null hypothesis, which may be true but 
not sure. In section 2.0, we consider the estimation of the 
means of bivariate normal distribution and consider a 
new shrinkage estimation of means following Saleh 
(2006) in the absence of Stein-type estimators since the 
dimension<3. The three alternative estimators are defined 
in section 3.0. The expressions of bias and mean square 
error (MSE) function of the estimators are obtained in 
section 4.0. Comparative studies of the relative efficiency 
of the estimators are included in section 5.0. In this 
papers, we consider the problem of estimation of the 
mean 1  of one of the components of a bivariate normal 
distribution with equal marginal variances from a sample 
of size .n The result of a preliminary test of hypothesis 
that the mean 1  and 2  of the two components of the 
bivariate normal distribution are equal is used to define 
an estimator for

1
. The bias and mean square error of 

this estimator are studied and the regions in the parameter 
space in which the estimator has smaller mean square 
error, the sample mean of the first component, are 
determined. The efficiency of this estimator relative to 
the usual estimator is tabulated and the tables can be used 

to determine a proper choice of significance level of the 
preliminary test.                     
            In this process, we define three biased estimators: 
the restricted estimator (RE) with a coefficient of distrust, 
the preliminary test estimator (PTE) as a linear 
combination of the usual estimator and the RE, and the 
shrinkage estimator (SE) by using the preliminary test 
approach. We investigate the bias and the mean square 
error function, both analytically and graphically to 
compare the performance of the estimators.  
The relative efficiency of the estimators is also studied to 
search for a better choice. Extensive computation has 
been used to produce graphs and tables to critically check 
various effects on the properties of the estimators. 
  2.0   The Model and Some preliminaries  
Let 

1 2( , )( 1,2,3, , )i iX X i n K  be a random sample of size n  

from a bivariate normal distribution with parameters 
2 2

1 2 1 2
, , ,     and  . The parameter  is introduced to take 

into account the fact that most multistage interpenetrating 
samples have a series of common primary, and 
secondary, sampling units.  
Restricting ourselves to the case 2 2 2

1 2 ,     where 2   

is unknown parameter and we are interested in the 
estimation of 

1  when it is a priori suspected that 
1 2   

may be true.                                                                         
       Also, assume that uncertain non-sample prior 
information on the value of  

1  is available, either from 

previous study or from practical experience of the 
researchers or experts. Let the non-sample prior 
information be expressed in the form of null hypothesis 
  

0 1 2:H      vs.    1 2: (2.1)AH    

Which may be true, but not sure? Then using the test 
statistic, as well as the sample and non-sample 
information to define the preliminary test and shrinkage 
estimators of the unknown 

1 it is well known that the 

MLE of the 
1  is unbiased. We wish to search for an 

alternative estimator of the mean that is biased but may 
well have some superior statistical property in terms of 
the mean square error. We are primarily concerned with 
the estimation of

1 , when it is suspected but not sure 

that
1 2  , i.e., with uncertain prior information 

about
1 . The unrestricted estimator (UE) of  

1  is the 

usual (MLE) estimator given by 

  1 1 .
1

1
(2.2)

n

j
j

x
n




 %   

Hence, the bias and the mean square error (MSE) of 
1%
 

are given by: 
      1 1 1 1 0. (2.3)B E    % %    

 
It is well known that the sampling distribution of MLE of 

1%  is normal with mean 
1  and variance equal to 2

.
n



     

   
2

2

1 1 1 1 (2.4)M E
n


    % %
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3.0    Alternative Estimators 
      As part of incorporating the uncertain non-sample 
prior information into the estimation process, first we 

combine the exclusive sample based estimator, 1
~  with 

the non-sample prior information presented in the form of 
a null hypothesis defined in (2.1) .  First, consider a 
simple linear combination of 0

1̂ and 
1% as: 

    0
1 1 1ˆ ˆ1 , 0 1, (3.1)d d d d      %

Where 0
1̂ is the estimator under 0H  in (2.1) given by :     

0 1 2
1

1

1
ˆ , ; 1,2. (3.2)

2

n

i ij
j

x i
n

 
 




  

% %
%

 
       This estimator of 

1 is called the restricted estimator 

(RE), where d is the degree of distrust on the null 
hypothesis, 0H . Now, 0d   means there is no distrust in 

the 0H  and we get 0
1 1ˆ ˆ( 0)d   ; while 1d   means there is 

complete distrust in the 0H  and we get
1 1ˆ ( 1)d   % . If 

0 < d < 1, the degree of distrust is an intermediate value 

which results in an interpolated value between 0
1̂ and 

1% given by (3.1). We may rewrite the above estimator in 

(3.1) as: 

                      0
1 1 1 1ˆ ˆ1 3.3d d      % %                                                                     

Following Saleh (2006), we define the preliminary test 
estimator (PTE) of  

1  define as: 

0
1 1 1 1

2

ˆ ˆ( ) (1 )( ) ( ), (3.4)PTE
vd d I t t       % %

                                              
Where  

                           
 

1

2
11 22 12

1 2

2

1v

s s s
t

n n
 



  
   

  

% %        

Further 

 
1 1

1
( )( ), ; ( 1, 2; 1, 2)

n n

ij ik i jk j i ik
k k

s x x x i j
n

  
 

      % % %             

vt is test statistic for testing the null-hypothesis 0H  and  I 

(A) is the indicator function of the set A and   2t   is the 

critical value chosen for the two-side  level test based 
on the Student-t distribution with ( 1)v n  degrees of. 

The bias and the mean square error have been derived by 
Ahsanullah (1971) for odd of sample size. 
  
We may rewrite the above equation (3.4) as : 

0
1 1 1 1ˆ ˆ( ) (1 )( ) ( ) (3.5)PTE d d I F F       % %

                                               
Where F  is the  (1 )th   quartile of a central 

F distribution with  (1, )v   degrees of freedom. The (PTE) 
is an extreme choice between 

1ˆ ( )d  and 
1% . Hence, it 

does not allow any smooth transition between the two 

extreme values. Also, it depends on the pre-selected level 
of significance of the test.  
          To overcome these problems, we consider the 
shrinkage estimator (SE) of 

1 defined as follows:                             

 10 0
1 1 1 1ˆ ˆ ˆ( ) 1 (3.6)SE

vc t   


   %

                                 
, where C is shrinkage constant. Now, if  

2 1

11 22 12

( ) ( 1)

2
v

n n
t

S S S

  


 

% %
 is large, 1ˆ

SE tends towards
1% , while 

for small vt equaling c, 1ˆ
SE  tends towards 0

1̂  similar to 

the preliminary test estimator. The shrinkage estimator 
dose not depends on the level of significance, unlike the 
preliminary test estimator. 
4.0 Some Statistical Properties 
 

           In this section, we derive the bias and the mean 
square error (MSE) functions of the estimators in (3.3), 
(3.5) and (3.6). Also, we discuss some of important 
features of these estimators. 
 
4.1    The bias and MSE of the RE 
 
The bias function of the restricted estimator (RE),  1ˆ d  is  

 
 

 2 1 2 1

1
ˆ( ) . (4.1)

2

d
B d  


 

The mean square error function of the restricted estimator 
 d1̂  is  

 

         
2 2 2

22 2
2 1ˆ 1 1 1 1 . (4.2)

2 2
M d d d

n n n

  
         

                        And    
 

2

2 2 1
2

.
2 1

n  

 


 


 

Where  2  is the departure constant from the null- 
hypothesis. The value of this constant is 0 when the null 
hypothesis is true; otherwise it is always positive.  
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The performance of the estimators change with the 

change in value of .           
4.2     The bias and MSE of the PTE 

The bias function of the preliminary test estimator (PTE), 

 1ˆ
PTE d   is 

 

        2
3 1 2 1 3, 1,

1 1
ˆ 1 , . (4.3)

2 3
PTE

v vB d d H F   
 

    
 

                 

Where  
1 2

2
, .,q qH   is the cumulative distribution of a 

non-central F  distribution with 
1 2( , )q q degrees of 

freedoms and non-centrality parameter 2 .This bias 
function of PTE depends on the coefficient of distrust 

and
2 .  

To evaluate the expression in (4.3) we used the following 
theorem :( see Saleh (2006))   

Theorem 4.1.If  ~ ;1Z N    and   2Z  is a Borel 

measurable function, then 

     2 2 2
3E Z Z E       . 

Furthermore, to obtain the mean square error of   1ˆ
PTE d  

we need the following theorem: 

Theorem 3.2 if  ~ ;1Z N   and  2Z  is a Borel 

measurable function, then 

        2 2 2 2 2 2 2
3 5 .E Z Z E E          

   
 

The proof of the above two theorems (4.1) and (4.2) are 
given in Appendix B2 of Judge and Bock (1978). 
The MSE of the preliminary test estimator (PTE), 

 1ˆ
PTE d     is 

                

        

         

2 2
2 2

3 1 3, 1,

2
2 2 2

3, 1, 5, 1,

1
ˆ 1 1 ,

2 3

1 1
1 1 2 , 1 , (4.4)

2 3 5

PTE
v v

v v v v

M d d H F
n n

d H F d H F
n

 
  


  

 
     

 

    
           

    

      Where   2 1

2(1 )

n
Z

 

 






% %   is distributed as 

( ,1)N  ,where   
 

2

2 2 1
2

.
2 1

n  

 


 


  

4.2.1   Some Properties of MSE of PTE 

( )i  Under the null hypothesis 2 ,o  and hence the MSE 

of the PTE 1ˆ
PTE   equals 

          

      
2 2

2
3, 1,

1 1
1 1 1 ,0 . 4.5

2 3v vd H F
n n

 
 

  
     

  

 

Thus, at 2 ,o   the PTE of 
1 performs better than

1% , the 

UE. As  0,   

 3, 1,

1
,0 1

3v vH F 
 

 
 

 

 Then,                          

    
  

 
2 22

2
3, 1,

1 11 1
1 1 1 ,0 . 4.6

2 3 2v v

d
d H F

n n

 
 

   
     

  

 
Which is the MSE of  1ˆ .d On the other hand, if 

                        0F      And      3, 1,

1
,0 0

3v vH F 
 

 
 

 

Then 

        
2 2

2
3, 1,

1 1
1 1 1 ,0 . 4.7

2 3v vd H F
n n

 
 

  
     

  
                      

 
Which is the MSE of

1% . 

    ii  As 2 ,   3, 1,

1
,0 0,

3v vH F 
 

 
 

 this means the 

expression at (4.4) tends towards 
2

n


 the MSE of the UE. 

    iii  Since   2
3, 1,

1
,

3v vH F 
 

 
 

 is always greater than 

  2
5, 1,

1
,

5v vH F 
 

 
 

 for any value of   replacing 

  2
5, 1,

1
,

5v vH F 
 

 
 

 by     2
3, 1,

1
,

3v vH F 
 

 
 

, the expression in 

(4.4) becomes  

     

       
2

2 2 2
3, 1,

1 1
1 (1 ) 1 , 1 1 ,

2 3v vd H F d d
n


 

  
            

  
    

 

   
2

n


  

 
               Whenever      

 2 1
. 4.8

1

d

d


 


 

 

 
On the other hand, the expression in (4.4) may be 
rewritten as  
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           
2

2 2 2 2
3, 1, 5, 1,

1 1 1
1 (1 ) 1 , 2 1 1 1 ,

2 3 5v v v vd H F d d H F
n


   

    
              

    

     
2

n


      Whenever    

2 1
(4.9)

1

d

d


 



      
This means that the MSE of PTE  1ˆ

PTE d as a function of 

² crosses the constant line  
2

1 1M
n


 %  in the interval   

1 1
, .

2 1

d d

d

  
 

 
 

 
Figures (4.1) display the behavior of the relative 
efficiency function of the PTE for different values of  
with the change in the value of ². The graphs illustrate 
the different features for values of 0d   and  0.5d   when 

0.7   ,and n=5. 
 
4.2.2    Determination of optimum  for the  

 
         Clearly the (S and hence the) relative efficiency 
of the preliminary test estimator compared with the 
unrestricted estimator depends on level of significance  
of the test of null-hypothesis and the departure parameter 
² 
Let the relative efficiency of the E with respect to the 

UE be denoted by   2
3 ;E    Which is given by  

                2
3 1 1ˆ; :PTEE RE    %  

                         

 
 

 
   

1
1 2

1 1

1

ˆ : 1 , 3.18
ˆ

PTE

PTE

MSE
RE g

MSE


 





    
 

%
%

 
Where  

 

           2 2 2 2
3, 1, 5, 1,

1 1 1
1 1 2 , 1 ,

2 3 5v v v vg d H F d H F  
    

            
    

             

        2 2 2
3, 1,

1 1
1 1 , 3.19

2 3v vg d H F 
 

      
 

 
The efficiency function attains its maximum at ² =0 for 
all  given by 

    

        
1

2
3 3, 1,

1 1
;0, 1 1 1 ,0 1. 4.12

2 3v vE d H F   



  
      

  

 

      As ² departs from the origin,  2
3 ; ,E    decreases 

monotonically crossing the line  2
3 ; , 1E     to a 

minimum at ²=
min , with minimum efficiency equal to 

0, then from that 
 
 A point on increases monotonically towards 1 as   
from below. In order to choose an optimum level of 
significance with maximum relative efficiency we adopt 

the following rule:  if it is known that 
1

1
ˆ0 ,

1

d

d



  


 is 

always chosen since  2
3 0; ,E    is maximum for all ² in 

this interval.  Generally, ² is unknown, we consider two 
cases. 
          (ⅰ)  Suppose the experimenter does not know the 

size of  but knows 0   and wants to accept an 

estimator which has relative efficiency not less than 0E .  

Then among the of estimator with A , where  

    2 2
0 0: \ ; , . 4.13A E E For all      

An estimator  1ˆ
PTE d  is chosen which maximizes 

 2
3 0; ,E    over all  and ². Thus, we solve the 

following equation for   2

2
0 0; , .Max Min E E  


   

          The solution   provides a maximum rule for the 
optimum level of significance of the preliminary test. For 
practitioners, Tables (4.1) and (4.2) provide the 

maximum  E   and minimum  0E relative efficiency of 

the PTE, the values of 0 at which the minimum relative 

efficiency occur and the intersection point between PTE 
and UE  1 for selected values of  when d=0 , n=5 and 

n=12. 
        From Table (4.2), as an example of selecting an 
optimal level of significance, if one wishes to have a 

guaranteed minimum relative efficiency of min
0 0.1959E   

of the PTE with a sample size of n=12, =0.30 and d=0 
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he has to select a level of significance, 0.35   with 
maximum relative efficiency he can obtain is 1.0702. 
    (ⅱ) Suppose the experimenter does not know the size 
of ² and , but wants an estimator which has a relative 
efficiency not less than 0E , then he has to look for   for 

which   2
0; ,E E    for all ² and . Tables (4.1) and 

(4.2) can be used for finding
 . Suppose n=5 and n=15, 

d=0.25 and A, where 
                       A=: = -0.9, -0.7, -0.1, 0.1, 0.3, 0.7, 0.9   
And the experimenter wants an estimator of relative 
efficiency not less 0.567. 
From Table (4.2), we fine that by choosing 0.2    
with maximum relative efficiency is 1.0195. Also, Tables 

(4.1) and (4.2) show the range of  for which 1ˆ
PTE  

dominates 
1%  for selected values of  and d for example 

using Table (4.2), if n=12, =0.10 and d=0 with =0.05 

and 0    1.7632, then PTE dominates UE but outside 
the interval the UE dominates the PTE.  
 
4.3 The bias and MSE of SE 

The bias function of the Shrinkage estimator (SE) 1ˆ
SE  is 

   0 1
4 1 1 1ˆ

SEB cE t     %  

         1
4 1 2 1ˆ

2
SE c

B E t    % %  

Where  

        
 

1

2
11 22 12

1 2

2

1

S S S
t

n n
 



  
   

  

% %  

 
   

   

1 2
4 1

1 2

2 1
ˆ

2 2 1

SE
nc

B E
n n

  


  

 
   

 
  

 

% %

% %
              

 4 1

1
ˆ (4.14)

2
SE c Z

B E
Zn


 

   
  

 

Where    
 

2 1

2 1

n
Z

 

 






% %
 Is distributed 

as  ,1N  ,where                                          

2 1

2(1 )

n  

 

 
   

  
                                 

Now, we use the following theorem to evaluate( 4.14) 

Theorem 4.3. If  ~ ,1Z N   and  2Z  is a Borel 

measurable function, then 

                          1 2
Z

E
Z

 
    

  
 

Where    .   is the c.d.f. of the standard normal variable. 

Now, using Theorem (3.3) we find                 

   
2

22
4 1

1
ˆ 2 1 , (4.15)

2
SE c

B K
n

      

  

   Where,    
 

22
.

1 1 2

n
K

n n




  
  

 

Furthermore, to obtain the mean square error of  1ˆ
SE  we 

need the following theorem (see Saleh (2006)). 
 
Theorem 4.4. If  ~ ,1 ;Z N   then 

    
2

22
2 1 ,E Z e





     

 

The proof of the above two theorems (4.3) and (4.4) are 
given in Khan and Saleh (2001).The MSE of the 

Shrinkage estimator (SE) 1ˆ
SE is  

 

     
22

2 2
4 1

1 2
ˆ 1 1 1 . (4.16)

2
SEM c c K e

n


  



 
     

  

 

The value of c which minimizes (4.16) depends on 2  
and is given by 
       

 
2

22
4.17C K e






 

To make c independent of 2 ,  we choose 0 2
.c K


  

thus, optimum reduces to 
            

   
22 2

2
4 1 1 1 1 2 . (4.18)SE K

M e
n


 




  

      
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Figure 4.1: Graph of the Relative Efficiency of PTE for selected values of d and  for n=5 and =-0.7 
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Table4.1: Values of the maximum and minimum efficiency of PTE  recommended significance levels and the 

intersection point between PTE  and ( )UE   for 0 , 5d n   

/  
-0.9 -0.7 -0.1 0.1 0.3 0.5 0.9 

0.0 5 E  4.3021 3.1924 1.7998 1.5713 1.3943 1.2531 1.0421 

 0E  0.0305 0.0339 0.0515 0.0622 0.0786 0.1066 0.3738 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.8383 0.8383 0.8383 0.8383 0.8383 0.8383 0.8383 

0.1 E  2.6828 2.2791 1.5702 1.4227 1.3006 1.1977 1.0341 

 0E  0.0335 0.0372 0.0564 0.0681 0.0859 0.1162 0.3968 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.7565 0.7565 0.7565 0.7565 0.7565 0.7565 0.7565 

0.2 E  1.7125 1.593 1.3173 1.2455 1.181 1.123 1.0224 

 0E  0.0436 0.0485 0.073 0.0878 0.1101 0.1476 0.4641 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.6623 0.6623 0.6623 0.6623 0.6623 0.6623 0.6623 

0.25 E  1.5046 1.4287 1.2409 1.1889 1.141 1.0968 1.018 

 0E  0.0511 0.0568 0.0851 0.1021 0.1276 0.17 0.5059 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 0.6316 

0.35 E  1.2669 1.2323 1.1389 1.1109 1.0841 1.0587 1.0112 

 0E  0.0738 0.0817 0.1209 0.144 0.1778 0.2324 0.6021 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.5872 0.5872 0.5872 0.5872 0.5872 0.5872 0.5872 

0.45 E  1.1418 1.125 1.0775 1.0625 1.048 1.0338 1.0066 

 0E  0.1135 0.1252 0.1811 0.2128 0.2579 0.3273 0.7087 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 0.5569 

0.5 E  1.1017 1.09 1.0564 1.0457 1.0352 1.0249 1.0049 

 0E  0.1444 0.1586 0.2256 0.2626 0.3141 0.3906 0.7622 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.5454 0.5454 0.5454 0.5454 0.5454 0.5454 0.5454 
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Table 4.2: Values of the maximum and minimum efficiency of PTE  recommended significance levels and the 
intersection point between PTE  and ( )UE   for    0 , 12d n   

 
5.0 Comparative study 
 
In this section, we define the relative efficiency function 
of the estimator, and analyze these functions to compare 
the relative performances of the estimators. 
 

5.1    Comparing RE against UE 
 
      The relative efficiency of  1ˆ d  compared to 

1% is 

denoted by   1 1ˆ :RE d %  and is obtained as 

                 

           
1

22 2
1 1

1 1
ˆ : 1 1 1 1 1 . 5.1

2 2
RE d d d   



 
        
 

%

     
We observed the following based on the expression in 
(5.1): 
     (ⅰ) if the non-sampling information is correct, i.e., 
²=0, the  

                             
  

1 1 2

2
ˆ : 1

2 1 1
RE d

d
 


 

  
%      

And  1ˆ d   is more efficient than
1% .   Thus, under the 

null hypothesis the biased estimator, RE performs better 
than the unbiased estimator, UE. 
      (ⅱ) if the non-sampling information is incorrect, i.e., 
²>0 we study the expression in (5.1) as a function of ² 
for a fixed d-value. As a function of ², the expression in 
(4.1) is a decreasing function with its maximum value 

α/  
-0.9 -0.7 -0.1 0.1 0.3 0.5 0.9 

0.05 E  3.57 2.8098 1.7146 1.5174 1.361 1.2337 1.0394 

 0E  0.0295 0.0329 0.0499 0.0604 0.0763 0.1037 0.3664 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.7632 0.7632 0.7632 0.7632 0.7632 0.7632 0.7632 

0.1 E  2.3283 2.0427 1.4932 1.3703 1.2661 1.1767 1.031 

 0E  0.0334 0.0372 0.0564 0.068 0.0858 0.1161 0.3965 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.6886 0.6886 0.6886 0.6886 0.6886 0.6886 0.6886 

0.2 E  1.5726 1.4832 1.2671 1.2084 1.1549 1.106 1.0195 

 0E  0.046 0.0511 0.0769 0.0924 0.1157 0.1549 0.4781 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.614 0.614 0.614 0.614 0.614 0.614 0.614 

0.25 E  1.4075 1.3496 1.2014 1.1589 1.1194 1.0825 1.0155 

 0E  0.0552 0.0613 0.0916 0.1097 0.1368 0.1816 0.5259 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.5914 0.5914 0.5914 0.5914 0.5914 0.5914 0.5914 

0.35 E  1.2167 1.1896 1.115 1.0921 1.0702 1.0492 1.0095 

 0E  0.0824 0.0912 0.1342 0.1593 0.1959 0.2543 0.6303 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.5597 0.5597 0.5597 0.5597 0.5597 0.5597 0.5597 

0.45 E  1.1154 1.102 1.0637 1.0515 1.0396 1.028 1.0055 

 0E  0.1294 0.1425 0.2043 0.2389 0.2875 0.361 0.7386 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.5387 0.5387 0.5387 0.5387 0.5387 0.5387 0.5387 

0.5 E  1.0827 1.0733 1.0463 1.0375 1.029 1.0205 1.004 

 0E  0.1655 0.1814 0.2551 0.2951 0.3499 0.4297 0.7903 

 0  40.1 40.1 40.1 40.1 40.1 40.1 40.1 

   0.5308 0.5308 0.5308 0.5308 0.5308 0.5308 0.5308 
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  2

2

2 1 1d   
  (>1) at ²=0 and minimum value 0 at 

²=. 
5.2    comparing PTE against UE 
 

Now, we consider the relative efficiency of the PTE 
compared to the UE .it is given by   
   

   
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              Where                
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 

For any fixed  0 1d d   and at a fixed level of 

significance . As F   

 

          
1

22 2
1 1

1 1
ˆ : 1 1 1 1 1 . 5.4

2 2
PTERE d d   



 
        

 
%

 
Which the relative efficiency is of  1ˆ d compared to 

1.% on the other hand,      1 1ˆ0, : 1,PTEF RE   % this 

means the relative efficiency of the PTE 

 is the same as the  unrestricted estimator 
1% . Note that 

under the null hypothesis, 
²=0, and the relative efficiency expression (4.2) equals 
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Which is the maximum value of the relative efficiency. 
Thus the relative efficiency function monotonically 

decreases crossing the 1-line for ²-value between 1

2

d  

and 1

1

d

d




,0 a minimum for some 2 2

min   and then 

monotonically increases, to approach the unit value from 
below. The relative efficiency of the preliminary test 
estimator equals unity whenever 
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Where 2
 lies in the interval
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,
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d d
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. This means that 
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Finally, as  2
1 1ˆ, : 1.PTERE    %  Thus, the preliminary 

test estimator is more efficient than the unrestricted 

estimator whenever 2 2 ,   otherwise 
1% is more 

efficient. As for the relative efficiency of  1ˆ
PTE d  

compared to  1ˆ d  we have 
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   Under the null-hypothesis,  
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At the same time we consider the result at (5.5), in 
combination, we obtain  
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ˆ ˆ ˆ1 1 1 : 1 : . 5.10
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PTE PTEd RE d RE          %

 

For general  2 0,   we have  1 1ˆ ˆ: 1PTERE  





  According as 
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

 





  
    

   
   

        
   

  

Finally, as   2
1ˆ ˆ, : 0.PTERE d     thus, except for a 

small interval around 0,  1ˆ
PTE d  is more efficient than 

 1ˆ .d  

 

5.3     Comparing SE against UE  
 

    The relative efficiency of 1ˆ
SE compared to 

1% is given 

by 

       
2 1

2
2 2

4 1 1ˆ; : 1 1 1 2 . 5.12SE K
E RE e   






  
        

    

%

 
Under the null-hypothesis ²=0, we have 

                                  

     
12

1 1ˆ : 1 1 1. 5.13SE K
RE   





 
    
 

%

 

In general,  1 1ˆ :SERE  %  decreases from  
12

1 1
K






 
  

 
at 

²=0 and crosses the 1-line at 2 ln 4  and then goes to 
the minimum value  

 
12

1 1
K






 
  

 
 As ²=.           (5.14)                                                                 

Thus, the loss of efficiency of 1ˆ
SE relative to 

1% is 

                            

   
12

1 1 1 5.15
K






 
   
 

  
While the gain in efficiency is  
             

   
12

1 1 5.16
K






 
  

 
 

Which is achieved at ²=0. Thus, for 2
1ˆln 4, SE   

performs better than 
1% ,otherwise 

1% performs better. 

The property of 1ˆ
SE is similar to the preliminary test 

estimator but does not depend on the level of 
significance. 

     Table (5.1) shows the maximum  maxE  relative 

efficiency of the SE at ²=0, the minimum efficiency SE 

 min .E  the value of  at which the minimum efficiency 

SE occurs  min  and the intersection point between SE 

and UE  S  which equal to ln 4=1.3863. This means 

when 0 ² 1.3863 the SE  dominates UE but outside the 

interval the UE  dominates SE. 

 
5.4    Comparing SE against PTE 
 
         To compare the relative performances of the SE and 
the PTE, first note that the SE is superior to PTE when 

the null hypothesis is true and the level of significance,  

is not too large. This is regardless of the value of the 
coefficient of distrust d. 

         However, as the value of  increases and or  
grows larger the relative efficiency picture changes. 
Tables (5.2) provide the maximum relative efficiency at 
²=0 for the RE (E1), PTE (E3), and SE(E4) relative to 
UE and the intersection relative efficiency  E   of the 

PTE and SE and the  -values at which the intersection 

occurs. For example, using Table (5.2) if n=5, =0.3 and 
d=0 with =0.05 and 0, 0.5232, then PTE dominates 
SE, but outside the interval SE dominates PTE. If ²=0 
the  1ˆ d  his large efficiency (

1 1.5385E  ) 

than  1 3ˆ 1.3943PTE E   and  1 4ˆ 1.2453SE E   and the 

efficiency at intersection point  0.05 0.5232   is equal to 

1.1189. Also, note that for large values of  and the 
sample sizes n, SE dominates PTE uniformly, i.e., when 

 =0 in Table (5.2). Figures (5.1) display the behavior of 

the RE, PTE and SE for different values of , d when  
5n  and 0.7   . 

 
5.5    Conclusion 

In this paper, we develop a general theory of 
shrinkage estimation in family of bivariate normal 
distribution with equal marginal variances from a sample 
of size .n  
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It is also showed that shrinkage estimator is 
asymptotically optimal in its own class and superior 
performance compared to the classical estimators. Its 
asymptotic optimality did not either depend on the 
specific distribution assumed (bivariate normal 
distribution) nor on the implicit assumption that with 
equal marginal variances from a sample of size .n  The 

considered shrinkage estimators have higher relative 
efficiency than the classical estimators specially when the 

estimated value of the mean is closer to true one. In 
addition, when the null hypothesis is true and the level of 

significance,  is not too large. This is regardless of the 
value of the coefficient of distrust d. Naturally it is found 
that as coefficient of distrust arises the shrinkage 
estimators tend to become superior compared with their 
competitors. 

 

Figure 5-1: Graph of the Relative Efficiency of  RE, PTE and SE  for selected values of d and  for n=5      and =-0.7 
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Table 5.1: Maximum and minimum efficiency of SE 
 

n/ R.E. -0.9 -0.7 -0.1 0.1 0.3 0.7 0.9 

5 maxE  
2.1489 1.9171 1.4483 1.3391 1.2453 1.0922 1.029 

 
minE  

0.6517 0.6765 0.7637 0.798 0.8355 0.9222 0.9726 

 
min  

17.1 17.1 17.1 17.1 17.1 17.1 17.1 

 
s  

1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 

15 maxE  
2.4032 2.0939 1.5107 1.3823 1.2741 1.1016 1.0317 

 
minE  

0.6314 0.6569 0.7474 0.7834 0.823 0.9156 0.9702 

 
min  

17.1 17.1 17.1 17.1 17.1 17.1 17.1 

 
s  

1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 

25 maxE  
2.4547 2.1288 1.5223 1.3903 1.2793 1.1032 1.0322 

 
minE  

0.628 0.6536 0.7446 0.7809 0.8208 0.9145 0.9698 

 
min  

17.1 17.1 17.1 17.1 17.1 17.1 17.1 

 
s  

1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 

35 maxE  
2.4769 2.1436 1.5272 1.3936 1.2815 1.1039 1.0324 

 
minE  

0.6266 0.6522 0.7435 0.7798 0.8199 0.914 0.9696 

 
min  

17.1 17.1 17.1 17.1 17.1 17.1 17.1 

 
s  

1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 

40 maxE  
2.4838 2.1483 1.5287 1.3946 1.2822 1.1041 1.0325 

 
minE  

0.6261 0.6518 0.7431 0.7795 0.8197 0.9138 0.9695 

 
min  

17.1 17.1 17.1 17.1 17.1 17.1 17.1 

 
s  

1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 

45 maxE  
2.4892 2.1519 1.5299 1.3955 1.2827 1.1043 1.0325 

 
minE  

0.6258 0.6514 0.7428 0.7793 0.8195 0.9137 0.9695 

 
min  

17.1 17.1 17.1 17.1 17.1 17.1 17.1 

 
s  

1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 
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Table 5.2: Maximum relative efficiencies of RE ( 1E ), PTE ( 3E ) and SE ( 4E ) and the intersecting efficiencies for PTE 

and SE ( E  ) for each  with corresponding -values  ( E ) for d=0 and n=5    

 
 

 / 2n  R.E. -0.9 -0.7 -0.1 0.1 0.3 0.5 0.9 

0.05 
1E  

20 6.6667 2.2222 1.8182 1.5385 1.3333 1.0526 

 
3E

 
4.3021 3.1924 1.7998 1.5713 1.3943 1.2531 1.0421 

 
4E  

2.1489 1.9171 1.4483 1.3391 1.2453 1.1637 1.029 

 
05.0

E
 

1.4055 1.348 1.2005 1.1583 1.1189 1.0822 1.0154 

 
05.0  

0.5232 0.5232 0.5232 0.5232 0.5232 0.5232 0.5232 

0.1 
1E  

20 6.6667 2.2222 1.8182 1.5385 1.3333 1.0526 

 
3E

 
2.6828 2.2791 1.5702 1.4227 1.3006 1.1977 1.0341 

 
4E  

2.1489 1.9171 1.4483 1.3391 1.2453 1.1637 1.029 

 
1.0

E
 

1.6522 1.5461 1.2963 1.23 1.1702 1.1159 1.0212 

 
1.0  

0.2804 0.2804 0.2804 0.2804 0.2804 0.2804 0.2804 

0.25 
1E  

20 6.6667 2.2222 1.8182 1.5385 1.3333 1.0526 

 
3E

 
1.5046 1.4287 1.2409 1.1889 1.141 1.0968 1.018 

 
4E  

2.1489 1.9171 1.4483 1.3391 1.2453 1.1637 1.029 

 
25.0

E
 

1.5046 1.4287 1.2409 1.1889 1.141 1.0968 1.018 

 
25.0  

0 0 0 0 0 0 0 

0.35 
1E  

20 6.6667 2.2222 1.8182 1.5385 1.3333 1.0526 

 
3E

 
1.2669 1.2323 1.1389 1.1109 1.0841 1.0587 1.0112 

 
4E  

2.1489 1.9171 1.4483 1.3391 1.2453 1.1637 1.029 

 
35.0

E
 

1.2669 1.2323 1.1389 1.1109 1.0841 1.0587 1.0112 

 
35.0  

0 0 0 0 0 0 0 

0.5 
1E  

20 6.6667 2.2222 1.8182 1.5385 1.3333 1.0526 

 
3E

 
1.1017 1.09 1.0564 1.0457 1.0352 1.0249 1.0049 

 
4E  

2.1489 1.9171 1.4483 1.3391 1.2453 1.1637 1.029 

 
5.0

E
 

1.1017 1.09 1.0564 1.0457 1.0352 1.0249 1.0049 

 
5.0  

0 0 0 0 0 0 0 
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