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ABSTRACT 

This paper contains a direct proof of the result asserting that every Hausdorff topological vector 

space has a completion. The proof here is different from known proofs of this result, since it uses 

only the convergence of nets and their basic properties. The completion is constructed as 

equivalence classes of Cauchy sequences. 
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1. INTRODUCTION 

A topological vector space (TVS) is a real or complex vector space with topological structure 

makes the two vector space operations continuous, provided that the topology on the real (or 

complex) field is the usual topology. The theory of TVSs is a very important branch of 

mathematics. Soon after TVSs were introduced back in the 1930’s, it was fount that they have a 

very rich theory and they are now considered as the corner stone in functional analysis. 

 

Considered as a generalization of normed spaces, TVSs were expacted to have the completion 

property as in the case in normed spaces. In the literature, there are several proofs of this property. 

Some of those proofs are non-elementary and using advanced and involving tool of mathematical 

analysis as in [1] (Sec 3.3). A similar situation in [2], a proof is provided for the completion of 

commutative topological groups (Theorem 3.2.7) and the case for topological vector spaces 

follows immediately. Some others were only for special cases, see [3], Chap VI, Theorem 1 whire 

completion for locally convex topological vector spaces. 

 

We thought of a natural proof generalizing the Cauchy sequence approach to normed spaces and 

metric spaces in general. Our proof is elementary and uses only the definition of TVSs and the 

convergence in them. To our knowledge, this approach was not persued in published literature 

concerning the theory of TVSs. 

 

We have provided a quick review of convergence in TVSs in the second section. The proof of the 

main theorem is given in the third section. 

  

2.  NETS IN TOPOLOGICAL VECTOR SPACES 

A directed set is a set 𝐼 with a relation ≤ satisfying the following conditions:   

    • (∀𝜆 ∈ 𝐼)  𝜆 ≤ 𝜆;  

    • 𝜆1 ≤ 𝜆2, 𝜆2 ≤ 𝜆3   ⇒   𝜆1 ≤ 𝜆3;  

    • (∀𝜆1, 𝜆2 ∈ 𝐼)  (∃𝜆 ∈ 𝐼)  𝜆1 ≤ 𝜆, 𝜆2 ≤ 𝜆.  



Journal of Academic Research             Issue 13                     January2019 
 9201يناير   عش  ثالث العدد ال  مجلة البحوث الأكاديمية

11 
 

 

A net in a set 𝑋 is a mapping 𝑃: 𝐼 → 𝑋, where 𝐼 is a directed set. A net is usually written as 

(𝑥𝜆)𝜆∈𝐼 where 𝑥𝜆 = 𝑃(𝜆). 

 

A subnet of (𝑥𝜆)𝜆∈𝐼 is a net (𝑥𝑆(𝜇))𝜇∈𝐽, where 𝐽 is a directed set and 𝑆 is a mapping 𝑆: 𝐽 → 𝐼 

satisfying the following conditions:   

    • 𝜇1, 𝜇2 ∈ 𝐽, 𝜇1 ≤ 𝜇2   ⇒   𝑆(𝜇1) ≤ 𝑆(𝜇2);  

    • (∀𝜆 ∈ 𝐼)  (∃𝜇 ∈ 𝐽)  𝜆 ≤ 𝑆(𝜇).  

 

If 𝑋  is a topological space, we say the net (𝑥𝜆)𝜆∈𝐼 ⊆ 𝑋  converges to 𝑥 ∈ 𝑋  if for any 

neighborhood 𝑁 there is 𝜆0 ∈ 𝐼 such that 𝑥𝜆 ∈ 𝑁 whenever 𝜆0 ≤ 𝜆; we denote this as 𝑥𝜆 → 𝑥 

or lim𝜆∈𝐼𝑥𝜆 = 𝑥 (usually we write lim𝜆𝑥𝜆 or lim  𝑥𝜆 if there is no ambiguity). We say that 𝑥 is 

an accumulation point of the net (𝑥𝜆)𝜆∈𝐼 if for any neighborhood 𝑁 and any 𝜆 ∈ 𝐼 there is 

𝜆′ ∈ 𝐼 such that 𝜆 ≤ 𝜆′ and 𝑥𝜆′ ∈ 𝑁. The point 𝑥 is an accumulation point of the net (𝑥𝜆)𝜆∈𝐼 if 

and only if there is a subnet (𝑥𝑆(𝜇))𝜇∈𝐽 of (𝑥𝜆)𝜆∈𝐼 such that lim𝜇∈𝐽𝑥𝑆(𝜇) = 𝑥. 

 

In a topological space 𝑋, a point 𝑥 is belongs to the closure of the set 𝐴 ⊆ 𝑋 if and only if there 

is a net (𝑥𝜆)𝜆∈𝐼 ⊆ 𝐴 such that 𝑥𝜆 → 𝑥. If 𝑌 is a topological space and 𝑓: 𝑋 → 𝑌 is a mapping, 

then 𝑓 is continuous at 𝑥0 ∈ 𝑋 if and only if lim𝜆𝑓(𝑥𝜆) = 𝑓(𝑥0) for any net (𝑥𝜆)𝜆∈𝐼  in 𝑋 

such that lim𝜆𝑥𝜆 = 𝑥0. A topological space is a Hausdorff space if and only if every net in this 

space converges at most to one point. 

 

Let 𝐼, 𝐽 be directed sets and define the following relation on the Cartesian product 𝐼 × 𝐽:  

 (𝜆1, 𝜇1) ≤ (𝜆2, 𝜇2)  whenever  𝜆1 ≤ 𝜆2  𝑎𝑛𝑑  𝜇1 ≤ 𝜇2. 

The set 𝐼 × 𝐽 with this relation is a directed set. 

 

Let 𝑋 be a TVS (Topological Vector Space) and let (𝑥𝜆)𝜆∈𝐼 , (𝑦𝜇)𝜇∈𝐽 be nets in 𝑋. We define 

the sum and the difference of these nets as  

 (𝑥𝜆 + 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽 , (𝑥𝜆 − 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽, 

respectively. Moreover, if (𝛼𝜈)𝜈∈𝐾 is a net of scalars, then the product of the nets (𝛼𝜈)𝜈∈𝐾 and 

(𝑥𝜆)𝜆∈𝐼 is defined as:  

 (𝛼𝜈𝑥𝜆)(𝜆,𝜈)∈𝐼×𝐾 . 

Now we have the following result:  

 

Proposition 2.1 Let (𝑥𝜆)𝜆∈𝐼 , (𝑦𝜇)𝜇∈𝐽  be convergent nets in the TVS 𝑋  and (𝛼𝜈)𝜈∈𝐾  is a 

convergent net of scalars.   

    1.  The net (𝑥𝜆 + 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽 is convergent and  

lim
(𝜆,𝜇)

(𝑥𝜆 + 𝑦𝜇) = lim 
𝜆

𝑥𝜆 + lim 
𝜇

𝑦𝜇 . 

    2.  The net (𝑥𝜆 − 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽 is convergent and  

lim 
(𝜆,𝜇)

(𝑥𝜆 − 𝑦𝜇) = lim 
𝜆

𝑥𝜆 − lim 
𝜇

𝑦𝜇 . 

    3.  The net (𝛼𝜈𝑥𝜆)(𝜆,𝜈)∈𝐼×𝐾 is convergent and  

lim 
(𝜆,𝜈)

𝛼𝜈𝑥𝜆 = (lim 
𝜈

𝛼𝜈) (lim 
𝜆

𝑥𝜆) . 
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Proof. We prove (1) only, (2) and (3) are done similarly. Suppose that 𝑥 = lim𝜆𝑥𝜆, 𝑦 = lim𝜇𝑦𝜇 

and let 𝑁 be a neighborhood of 𝑥 + 𝑦. There is a neighborhood 𝑁0 of zero in 𝑋 such that 

𝑥 + 𝑦 + 𝑁0 ⊆ 𝑁 and there is a neighborhood 𝑀0 of zero such that 𝑀0 + 𝑀0 ⊆ 𝑁0. 

 

Note that 𝑥 + 𝑀0, 𝑦 + 𝑀0 are neighborhoods of 𝑥, 𝑦, respectively. By convergence, there are 

𝜆0 ∈ 𝐼, 𝜇0 ∈ 𝐽 such that 𝑥𝜆 ∈ 𝑥 + 𝑀0, 𝑦𝜇 ∈ 𝑦 + 𝑀0 whenever 𝜆0 ≤ 𝜆, 𝜇0 ≤ 𝜇. Thus,  

𝑥𝜆 + 𝑦𝜇 ∈ 𝑥 + 𝑦 + 𝑀0 + 𝑀0 ⊆ 𝑥 + 𝑦 + 𝑁0 ⊆ 𝑁. 

Hence, if (𝜆0, 𝜇0) ≤ (𝜆, 𝜇), then 𝑥𝜆 + 𝑦𝜇 ∈ 𝑁. Since 𝑁 is arbitrary neighborhood, it follows 

that (𝑥𝜆 + 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽 is convergent and lim(𝜆,𝜇)(𝑥𝜆 + 𝑦𝜇) = 𝑥 + 𝑦. ■ 

 

Definition 2.2 Let 𝑋 be topological vector space. We say that the net (𝑥𝜆)𝜆∈𝐼 ⊆ 𝑋 is a Cauchy 

net in 𝑋 if for any neighborhood 𝑁 of zero there is 𝜆0 ∈ 𝐼 such that 𝑥𝜆1
− 𝑥𝜆2

∈ 𝑁, whenever 

𝜆0 ≤ 𝜆1, 𝜆0 ≤ 𝜆2.  

 

Remark 2.3   

    1.  The net (𝑥𝜆)𝜆∈𝐼 in the TVS X is a Cauchy net if and only if lim (𝜆,𝜇)∈𝐼×𝐼(𝑥𝜆 − 𝑥𝜇) = 0. 

    2.  If the net (𝑥𝜆)𝜆∈𝐼 is convergent, then it is a Cauchy net.  

 

Proposition 2.4 Let (𝑥𝑆(𝜇))𝜇∈𝐽  be a subnet of the Cauchy net (𝑥𝜆)𝜆∈𝐼  in the TVS 𝑋 . If 

(𝑥𝑆(𝜇))𝜇∈𝐽 is convergent, then (𝑥𝜆)𝜆∈𝐼 is a convergent and lim 𝜆∈𝐼 𝑥𝜆 = lim 𝜇∈𝐽 𝑥𝑆(𝜇).  

Proof. Let 𝑥 = lim𝜇∈𝐽𝑥𝑆(𝜇) and let 𝑁 be a neighborhood of 𝑥. There is a neighborhood 𝑁0 of 

0 such that 𝑥 + 𝑁0 ⊆ 𝑁 and there is a neighborhood 𝑀0 of 0 such that 𝑀0 + 𝑀0 ⊆ 𝑁0. 

Since (𝑥𝜆)𝜆∈𝐼 is a Cauchy net, there is 𝜆0 ∈ 𝐼 such that 𝑥𝜆1
− 𝑥𝜆2

∈ 𝑀0 if 𝜆0 ≤ 𝜆1, 𝜆0 ≤ 𝜆2. 

By convergence, there is 𝜇0 ∈ 𝐽 such that 𝑥𝑆(𝜇) ∈ 𝑥 + 𝑀0, whenever 𝜇0 ≤ 𝜇. We can choose 

𝜇1 ∈ 𝐽 such that 𝜇0 ≤ 𝜇1 and 𝜆0 ≤ 𝑆(𝜇1). Thus, if 𝜆0 ≤ 𝜆, then  

𝑥𝜆 = 𝑥𝑆(𝜇1) + 𝑥𝜆 − 𝑥𝑆(𝜇1) ∈ 𝑥 + 𝑀0 + 𝑀0 ⊆ 𝑥 + 𝑁0. 

Hence, 𝑥𝜆 ∈ 𝑁 , whenever 𝜆0 ≤ 𝜆 . Thus, we have proved that (𝑥𝜆)𝜆∈𝐼  is convergent and 

lim𝜆∈𝐼𝑥𝜆 = 𝑥. ■ 

 

Corollary 2.5  If a Cauchy net has a accumulation point, then it convergent and it converge to 

its accumulation point.  

  

3.  COMPLETION OF HAUSDORFF TOPOLOGICAL VECTOR SPACES 

In this section, 𝑋 will denote a Hausdorff TVS. Let 𝑋C be the set of all Cauchy nets in 𝑋 and let 

≅ be the relation on 𝑋C defined as follows  

 (𝑥𝜆)𝜆∈𝐼 ≅ (𝑦𝜇)𝜇∈𝐽  if the net  (𝑥𝜆 − 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽  converges to zero. 

This is an equivalence relation on 𝑋C. It is obvious from definition that ≅ is reflexive and 

symmetric. To show that it is transitive we suppose that  

(𝑥𝜆)𝜆∈𝐼 ≅ (𝑦𝜇)𝜇∈𝐽  and  (𝑦𝜇)𝜇∈𝐽 ≅ (𝑧𝜈)𝜈∈𝐾 . 

Let 𝑁 be a zero neighborhood and choose a zero neighborhoods 𝑀 such that 𝑀 + 𝑀 ⊆ 𝑁. 

Since lim(𝜆,𝜇)(𝑥𝜆 − 𝑦𝜇) = lim(𝜇,𝜈)(𝑦𝜇 − 𝑧𝜈) = 0 , there are (𝜆1, 𝜇1) ∈ 𝐼 × 𝐽  and (𝜇′1, 𝜈1) ∈

𝐽 × 𝐾  such that 𝑥𝜆 − 𝑦𝜇 ∈ 𝑀 , whenever (𝜆1, 𝜇1) ≤ (𝜆, 𝜇)  and 𝑦𝜇 − 𝑧𝜈 ∈ 𝑀 , whenever 

(𝜇′1, 𝜈1) ≤ (𝜇, 𝜈). Hence, it follows easily that 𝑥𝜆 − 𝑧𝜈 ∈ 𝑁, whenever (𝜆1, 𝜈1) ≤ (𝜆, 𝜈) and 
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hence lim(𝜆,𝜈)(𝑥𝜆 − 𝑧𝜈) = 0. Therefore, (𝑥𝜆)𝜆∈𝐼 ≅ (𝑧𝜈)𝜈∈𝐾. 

 

We define the vector space �̃� as the quotient set 𝑋C/≅ privided with the following two vector 

space operations:  

[(𝑥𝜆)𝜆∈𝐼] + [(𝑦𝜇)𝜇∈𝐽] = [(𝑥𝜆 + 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽],    𝑐 ⋅ [(𝑥𝜆)𝜆∈𝐼] = [(𝑐 ⋅ 𝑥𝜆)𝜆∈𝐼]. 

The notation [. ] stands for ≅-equivalence class. These operations are well-defined and we will 

prove this only for addition, scalar multiplication can be done similarly and far more easily. If 

[(𝑥𝜆)𝜆∈𝐼] = [(𝑥′𝜆′)𝜆′∈𝐼′], [(𝑦𝜇)𝜇∈𝐽] = [(𝑦′𝜇′)𝜇′∈𝐽′], then  

lim (𝜆,𝜆′)(𝑥𝜆 − 𝑥′𝜆′) = lim (𝜇,𝜇′)(𝑦𝜇 − 𝑦′𝜇′) = 0 

Therefore, we have  

lim ((𝑥𝜆 + 𝑦𝜇) − (𝑥′𝜆′ + 𝑦′𝜇′)) = lim ((𝑥𝜆 − 𝑥′𝜆′) + (𝑦𝜇 − 𝑦′𝜇′)) = 0. 

This implies [(𝑥𝜆 + 𝑦𝜇)(𝜆,𝜇)∈𝐼×𝐽] = [(𝑥𝜆′ + 𝑦𝜇′)(𝜆′,𝜇′)∈𝐼′×𝐽′]. 

 

We can define a mapping 𝑋 → �̃�, 𝑥 ↦ �̃�, where �̃� = [(𝑥𝜆)𝜆∈𝐼], the net (𝑥𝜆)𝜆∈𝐼 is a constant net 

defined by 𝑥𝜆 = 𝑥  (∀𝜆 ∈ 𝐼) for a fixed directed set 𝐼. Since 𝑋 is Hausdorff space, this mapping 

is injective, and hence, 𝑋 can be imbedded in �̃� as vector space by identifying every 𝑥 ∈ 𝑋 

with its corresponding equivalence class �̃�  in �̃� . Therefore, from now on, we will always 

consider 𝑋 ⊆ �̃�. 

 

Now we need to define a vector topology on �̃�. Let 𝒩 be neighborhood base at in the TVS 𝑋 

consisting of balanced neighborhoods. For any 𝑁 ∈ 𝒩 we define  

�̃� = {�̃� ∈ �̃�: ∃(𝑥𝜆)𝜆∈𝐼 ∈ �̃�  and  ∃𝜆0 ∈ 𝐼  such that  𝜆0 ≤ 𝜆 ⇒ 𝑥𝜆 ∈ 𝑁}. 

Note that 𝑁 ⊆ �̃�. Let �̃� be the family of all �̃� ⊆ �̃�, where 𝑁 ∈ 𝒩; that is �̃� = {�̃�: 𝑁 ∈ 𝒩}. 

 

Theorem 3.1 There is a unique vector topology on �̃� such that the family �̃� is a neighborhood 

base at zero. Moreover, under this topology, �̃� is a Hausdorff space and the TVS 𝑋 is a dense 

subspace of �̃�.  

Proof. Let �̃� ∈ �̃� and let |𝛼| ≤ 1. If �̃� ∈ �̃�, then there is (𝑥𝜆)𝜆∈𝐼 ∈ �̃� and 𝜆0 ∈ 𝐼 such that 

𝑥𝜆 ∈ 𝑁 , whenever 𝜆0 ≤ 𝜆 . Since 𝑁  is balanced, 𝛼𝑥𝜆 ∈ 𝑁  for 𝜆0 ≤ 𝜆 . Hence, 𝛼�̃� =
[(𝛼𝑥𝜆)𝜆∈𝐼] ∈ �̃� and we conclude that �̃� is balanced since 𝛼 is arbitrary. 

 

Let �̃� ∈ �̃�  and let 𝑁 ∈ 𝒩 . There is 𝑁1 ∈ 𝒩  such that 𝑁1 + 𝑁1 ⊆ 𝑁 . Since �̃� = [(𝑥𝜆)𝜆∈𝐼], 

there is 𝜆0 ∈ 𝐼 such that 𝑥𝜆 − 𝑥𝜆0
∈ 𝑁1, whenever 𝜆0 ≤ 𝜆, since (𝑥𝜆)𝜆∈𝐼 is a Cauchy net. Since 

𝑁0  is absorbent, there is 𝑟0 > 0  such that 𝛼𝑥𝜆0
∈ 𝑁0 , whenever |𝛼| ≤ 1 . If we choose 

𝑟 = min{𝑟0, 1}, then, since 𝑁1 is balanced, we have  

|𝛼| ≤ 𝑟  𝑎𝑛𝑑  𝜆0 ≤ 𝜆  imply  𝛼𝑥𝜆 = 𝛼(𝑥𝜆 − 𝑥𝜆0
) + 𝛼𝑥𝜆0

∈ 𝑁1 + 𝑁1 ⊆ 𝑁. 

Therefore, 𝛼�̃� ∈ �̃�, whenever |𝛼| ≤ 𝑟 and this means �̃� is absorbent.  

 

If 𝑁 ∈ 𝒩 , the there is 𝑁1 ∈ 𝒩  such that 𝑁1 + 𝑁1 ⊆ 𝑁  and this implies �̃�1 + �̃�1 ⊆ �̃� . 

Moreover, if 𝑁1, 𝑁2 ∈ 𝒩, there is 𝑁 ∈ 𝒩 such that 𝑁 ⊆ 𝑁1 ∩ 𝑁2 and this implies immediately 

that �̃� ⊆ �̃�1 ∩ �̃�2. Now, now by Theorm 5, Sec. 2.2 in [1], we have proved that there is a unique 

vector topology on �̃� with �̃� as a zero local base. 

 

If �̃� = [(𝑥𝜆)𝜆∈𝐼] ∈ �̃� for all 𝑁 ∈ 𝒩, then for a fixed 𝑁 ∈ 𝒩, there is 𝜆𝑁 ∈ 𝐼, such that 𝑥𝜆 ∈ 𝑁, 
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whenever 𝜆𝑁 ≤ 𝜆. Thus, 𝑥𝜆 → 0 and this implies �̃� is zero. Hence, �̃� is a Hausdorff space. 

Since 𝑁 = �̃� ∩ 𝑋  (∀𝑁 ∈ 𝒩), it is follows easily that 𝑋  is a subspace of �̃� . Moreover, if 

�̃� = [(𝑥𝛼)𝛼∈𝐼] ∈ �̃�, then we can show that the net (𝑥𝜆)𝜆∈𝐼 ⊆ 𝑋 converges to �̃� in �̃�, thus, 𝑋 is 

dense in �̃� and this completes the proof. ■ 

 

Theorem 3.2 The TVS �̃� is complete.  

Proof. Let (�̃�𝜈)𝜈∈𝐾 be a Cauchy net in �̃� and let 𝑁 ∈ 𝒩. For every 𝜈 ∈ 𝐾 we choose and fix a 

Cauchy net (𝑢𝜆)𝜆∈𝐼𝜈
∈ �̃�𝜈. If 𝑁 ∈ 𝒩, then there is 𝜆0 ∈ 𝐼𝜈 such that 𝑢𝜆1

− 𝑢𝜆2
∈ 𝑁, whenever 

𝜆0 ≤ 𝜆1, 𝜆0 ≤ 𝜆2. Define 𝑃(𝑁, 𝜈) = 𝑢𝜆0
. 

 

If 𝑁1 ⊇ 𝑁2, 𝜈1 ≤ 𝜈2 , then we write (𝑁1, 𝜈1) ≤ (𝑁2, 𝜈2) . This relation turns 𝒩 × 𝐾  into a 

directed set, hence, (𝑃(𝑁, 𝜈))(𝑁,𝜈)∈𝒩×𝐾 is a net in 𝑋. 

 

Now we show that (𝑃(𝑁, 𝜈))(𝑁,𝜈)∈𝒩×𝐾 is a Cauchy net. If 𝑊 is a neighborhood of 0, there is 

𝑁0 ∈ 𝒩 such that 𝑁0 + 𝑁0 + 𝑁0 ⊆ 𝑊. There is 𝜈0 ∈ 𝐾 such that �̃�𝜈1
− �̃�𝜈2

∈ �̃�0, whenever 

𝜈0 ≤ 𝜈1, 𝜈0 ≤ 𝜈2. 

 

If (𝑁0, 𝜈0) ≤ (𝑁1, 𝜈1), then 𝑃(𝑁1, 𝜈1) = 𝑢𝜆0
 for some 𝜆0 ∈ 𝐼𝜈1

, where (𝑢𝜆)𝜆∈𝐼𝜈1
∈ �̃�𝜈1

 is the 

net we have fixed in the beginning of this proof. Similarly, if (𝑁0, 𝜈0) ≤ (𝑁2, 𝜈2) , then 

𝑃(𝑁2, 𝜈2) = 𝑣𝜇0
 for some 𝜇0 ∈ 𝐼𝜈2

, where (𝑣𝜇)𝜇∈𝐼𝜈2
 is the net we fixed net in �̃�𝜈2

. Since 

�̃�𝜈1
− �̃�𝜈2

∈ �̃�0 , we can choose 𝜆1 ∈ 𝐼𝜈1
 and 𝜇1 ∈ 𝐼𝜈2

 such that 𝜆0 ≤ 𝜆1, 𝜇0 ≤ 𝜇1  and 

𝑢𝜆1
− 𝑣𝜇1

∈ 𝑁0. By the definition of 𝑃(𝑁1, 𝜈1) we find that 𝑃(𝑁1, 𝜈1) − 𝑢𝜆1
= 𝑢𝜆0

− 𝑢𝜆1
∈ 𝑁1 

and similarly, 𝑣𝜇1
− 𝑃(𝑁2, 𝜈2) ∈ 𝑁2. Therefore  

𝑃(𝑁1, 𝜈1) − 𝑃(𝑁2, 𝜈2) ∈ 𝑁1 + 𝑁0 + 𝑁2 ⊆ 𝑁0 + 𝑁0 + 𝑁0 ⊆ 𝑀, 

since 𝑁1 ⊆ 𝑁0 and 𝑁2 ⊆ 𝑁0. Hence, (𝑃(𝑁, 𝜈))(𝑁,𝜈)∈𝒩×𝐾 is a Cauchy net. Now we denote the 

equivalence class of this net by �̃� and we will show that �̃� is an accumulation point of (�̃�𝜈)𝜈∈𝐾 

and by Corollary 2.5 we find that (�̃�𝜈)𝜈∈𝐾 converges to �̃� and this completes the proof. 

 

Let 𝜈0 ∈ 𝐾, 𝑀 ∈ 𝒩 and choose 𝑀1 ∈ 𝒩 such that 𝑀1 + 𝑀1 ⊆ 𝑀. Since (𝑃(𝑁, 𝜈))(𝑁,𝜈)∈𝒩×𝐾 

is a Cauchy net, there is (𝑁1, 𝜈1) ∈ 𝒩 × 𝐾  such that 𝑃(𝑁1, 𝜈1) − 𝑃(𝑁, 𝜈) ∈ 𝑀1 , whenever 

(𝑁1, 𝜈1) ≤ (𝑁, 𝜈) . We can, and we will, choose (𝑁1, 𝜈1) ∈ 𝒩 × 𝐾  such that 𝑁1 ⊆ 𝑀1  and 

𝜈0 ≤ 𝜈1. Let (𝑢𝜆)𝜆∈𝐼𝜈1
 be the fixed Cauchy net in the equivalence class �̃�𝜈1

 defined in the start 

of this proof. Then 𝑃(𝑁1, 𝜈1) = 𝑢𝜆0
 where 𝜆0 ∈ 𝐼𝜈1

 and 𝑢𝜆 − 𝑢𝜆0
∈ 𝑁1 , whenever 𝜆0 ≤ 𝜆 . 

Hence,  

𝑢𝜆 − 𝑃(𝑁, 𝜈) = 𝑢𝜆 − 𝑢𝜆0
+ 𝑃(𝑁1, 𝜈1) − 𝑃(𝑁, 𝜈) ∈ 𝑁1 + 𝑀1 ⊆ 𝑀, 

whenever 𝜆0 ≤ 𝜆 and (𝑁1, 𝜈1) ≤ (𝑁, 𝜈). Therefore, �̃�𝜈1
− �̃� ∈ �̃�. Thus, �̃� is an accumulation 

of the given Cauchy net. ■  
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