

Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Dibenzylideneacetone-Based Random Aromatic Copolymers

Afaf S. Khadhar, Fatima A. Alzanzi, Tareg M. Elsunaki , Ali M. Alhalib

t.elsunaki@sci.misuratau.edu.ly

Article information	Abstract
<p>Key words Random copolymers; structure–property; relationship</p> <p>Received 06 01 2026, Accepted 20 01 2026, Available online 21 01 2026</p>	<p>A multi-technique study of copolymers V – VII reveals that molecular weight distribution (polydispersity index, PDI) governs polymer properties more strongly than absolute molecular weight. Narrow distributions promote uniform crystallization, enhancing thermal stability, mechanical strength, surface organization, and interfacial properties, whereas broad distributions lead to heterogeneous structures and reduced consistency. Copolyester VII, with moderate molecular weight (30,000 g mol⁻¹) and narrow PDI (1.20), achieved optimal thermal stability ($T_m = 582^\circ\text{C}$), high crystallinity (65%, 45.2 nm crystallite size), hydrophobicity (contact angle = 93.76°), and tensile strength (72.5 MPa), demonstrating the advantage of distribution control over molecular weight maximization. Copolymers V and VI illustrate how moderate molecular weight or broad distributions can tailor surface or processing properties, respectively. Mechanistic analysis shows that distribution uniformity dictates crystallization kinetics and structural order, providing predictive structure–property relationships. These insights enable rational material selection for high-performance, surface-critical, or processing-intensive applications while reducing synthesis complexity, resource consumption, and environmental impact. This work establishes molecular weight distribution as a key parameter for designing next-generation, sustainable polymer materials.</p>

I. Introduction

Randomly structured polymers are considered a vital topic for understanding how their composition influences their physical and chemical properties, as the irregular distribution of bonds and functional groups plays a key role in determining the material's behavior and its response in various applications. This type of polymer is characterized by high flexibility and unique features, such as extended compatibility and heterogeneous molecular-weight distribution, which directly affect its thermal, mechanical, and surface properties. It is evident that variations in random composition can enhance certain characteristics such as solubility, stability, and biological reactivity by controlling the distribution of functional groups and altering the bonding patterns between polymer units [1, 2]. Moreover, the crucial role of random mixing in modifying material properties is attributed to its ability to provide functional diversity and flexibility in designing compounds with specific characteristics tailored to various industrial and medical applications. Therefore, studying the effect of random distribution of bonds and molecules on physical properties is an important step toward developing more specialized and efficient materials that meet the needs of multiple technological and engineering fields [3].

This study aims to develop a comprehensive understanding of the structure–property–function relationship in newly designed random aromatic copolymers by synthesizing three copolymers using interfacial polycondensation technique and examining the influence of

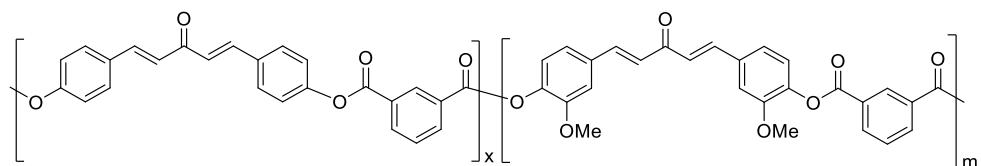
Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Novel Random Copolymers

functional groups such as methoxy on their behavior. A full characterization will be conducted, including structural and spectroscopic analysis, molecular weight determination, and evaluation of thermal and mechanical properties. The study also involves investigating nanoscale morphology, particle stability, surface characteristics, and crystallinity using advanced techniques such as AFM, SEM, GPC, XRD, DSC, DLS, contact angle measurement, zeta potential and tensile testing. This approach seeks to correlate random structural variations with material properties to guide the design of high-performance polymers for diverse applications.

II. Experimental

2.1 Materials

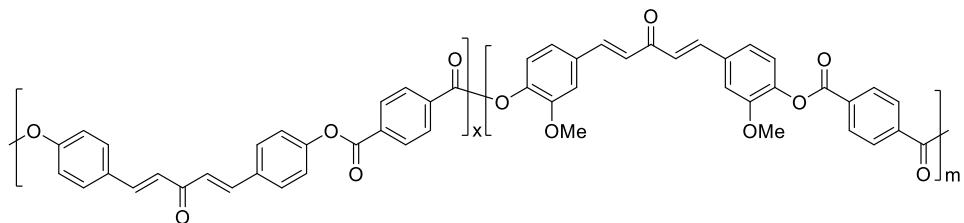
All chemicals were of high purity and further purified by standard methods. With the exception of isophthaloyl chloride, which was purified by recrystallization using *n*-hexane.


2.2 Synthesis of Dibenzylideneacetone derivatives (Monomers) I, II

The procedure of preparing the diphenol derivatives (**I**, **II**) has been published in a previous study [4, 5].

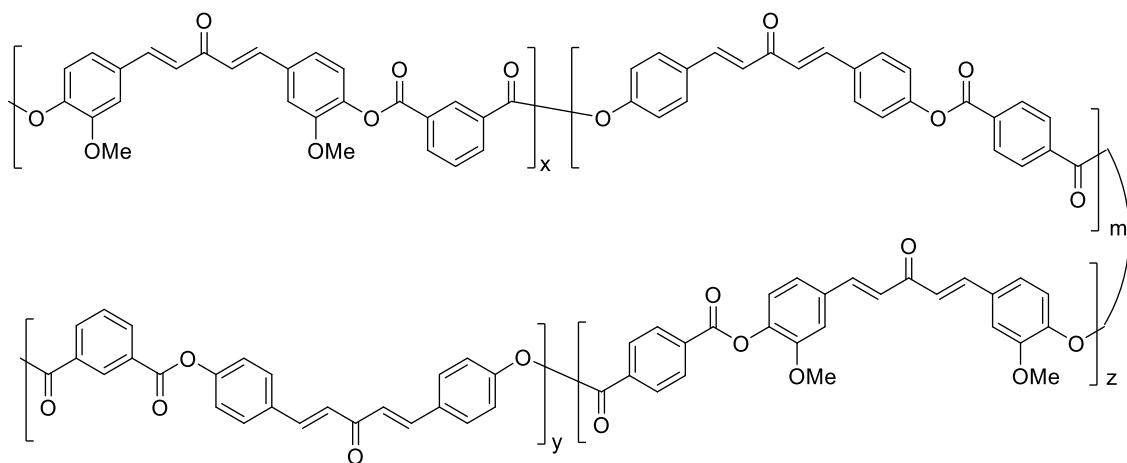
2.3 Synthesis of Copolymers V – VII

The copolymers **V** – **VII** were prepared using a simple apparatus consisting of a two-necked round-bottom flask equipped with a mechanical stirrer operating at 2000 rpm in one neck, while the other neck was fitted with an addition funnel. A solution containing appropriate 0.002 mol of acid dichlorides dissolved in 25 ml of methylene chloride, was gradually added to a mixture of 0.002 mol of diphenol **I** and **II** dissolved in an aqueous solution of sodium hydroxide (0.004 mol in 50 ml of distilled water), to which 25 ml of methylene chloride had been added after dissolution. The addition was carried out at room temperature with continuous stirring for 2 min. After the complete addition of the diacid chlorides, the reaction mixture was vigorously stirred for an additional 1 h, resulting in the formation of a lumpy product **V** – **VII**. The product was filtered under reduced pressure, washed several times with distilled water followed by hot ethanol, and finally dried in an oven at 80 °C for 24 h.


2.3.1 Synthesis of Copolyester **V**

Obtained utilising the above procedure with (0.001 mol) 1,3-bis(4-hydroxybenzylidene) acetone **I** and (0.001 mol) 1,3-bis(4-hydroxy-3-methoxybenzylidene) acetone **II** and (0.002 mol) isophthaloyl dichloride **III** as swollen, light Yellow in color in **95%** yield.

mp >350 °C; IR: (ATR, cm⁻¹) 1736, 1654, 1617, 1598, 1164; Found: C, 72.71%; H, 4.20%; Calc. for (C₅₂H₃₆O₁₂): C, 73.23%; H, 4.25%.


2.3.2 Synthesis of Copolyester VI

Obtained utilising the above procedure with (0.001 mol) 1,3-bis(4-hydroxybenzylidene) acetone **I** and (0.001 mol) 1,3-bis(4-hydroxy-3-methoxybenzylidene) acetone **II** and (0.002 mol) terephthaloyl dichloride **IV** as swollen, light Yellow in color in **88%** yield.

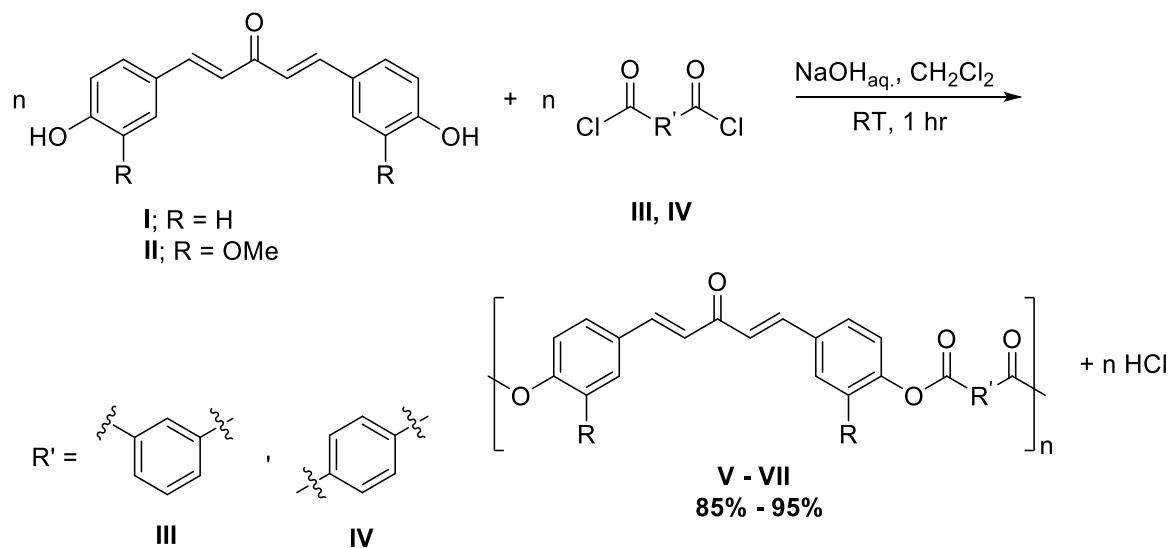
mp >350 °C; IR: (ATR, cm⁻¹) 1739, 1653, 1618, 1598, 1162; Found: C, 72.91%; H, 4.17 %; Calc. for (C₅₂H₃₆O₁₂): C, 73.23%; H, 4.25%.

2.3.3 Synthesis of Copolyester VII

Obtained utilising the above procedure with (0.001 mol) 1,3-bis(4-hydroxybenzylidene) acetone **I** and (0.001 mol) 1,3-bis(4-hydroxy-3-methoxybenzylidene) acetone **II** and (0.001 mol) isophthaloyl dichloride **III** and (0.001 mol) terephthaloyl dichloride **IV** as swollen, light Yellow in color in **85%** yield.

mp >350 °C; IR: (ATR, cm⁻¹) 1737, 1651, 1618, 1599, 1158; Found: C, 72.70 %; H, 4.09%; Calc. for (C₅₂H₃₆O₁₂): C, 73.23%; H, 4.25%.

2.4 Characterization Techniques


- Gel permeation chromatography (GPC): to determine molecular weight and PDI.
- Scanning electron microscopy (SEM) and atomic force microscopy (AFM): to study surface morphology and nanoscale roughness.
- Contact angle measurements: to evaluate surface wettability.
- Termogravimetric analysis (TGA) and differential scanning calorimetry (DSC): to study thermal transitions and thermal stability of the polymers.
- Dynamic light scattering (DLS) and Zeta Potential: to study solution behavior and colloidal stability.
- Tensile Testing: to assess mechanical strength.
- X-ray diffraction (XRD): to quantify crystallinity and determine crystalline structure.

Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Novel Random Copolymers

III. Results and Discussion

3.1 Synthesis of Copolymers V – VII

An unreported class of random copolymers **V** – **VII** were synthesized by the polycondensation of 1,3-bis(4-hydroxybenzylidene) acetone **I** and 1,3-bis(4-hydroxy-3-methoxybenzylidene) acetone **II** and isophthaloyl dichloride **III** and (or) terephthaloyl dichloride **IV** using an interfacial polycondensation technique at RT (Scheme 1).

Scheme 1

IR and elemental analysis confirmed the structure of prepared copolymers. Firstly, IR spectra for all copolymers showed the disappearance of the characteristic absorption band of the OH group and the appearance of new absorption bands at $1736 - 1739 \text{ cm}^{-1}$ for the ester carbonyl groups and $1651 - 1654 \text{ cm}^{-1}$ for the carbonyl groups and at $1617 - 1618 \text{ cm}^{-1}$ for C=C groups and at $1158 - 1164 \text{ cm}^{-1}$ for C-O-C groups respectively.

The elemental analysis of all copolymers coincided with the characteristic repeating units of each. It should be noted that the elemental analysis of these copolymers deviated up to 0.52% from the theoretical values. However, it is not uncommon for copolymers to trap solvent molecules within the copolymer matrix [6].

3.2 Study the Solubility of Copolymers V – VII

Room temperature solubility characteristics of copolymers **V** – **VII** were tested using various solvents including: acetone, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, dichloromethane, chloroform, carbon tetrachloride, 1,4-dioxane and formic acid (0.02 g of copolymer in 3 ml of solvent at room temperature). Concerning the solubility, it was noticed that all of them were insoluble in most of the used solvents while were partially soluble in concentrated formic acid (Table 1) [7].

Table 1. Solubility Characteristics of Copolymers **V – VII**

Solvent	Copolyester V	Copolyester VI	Copolyester VII
Acetone	-	-	-
Chloroform	-	-	-
1,4-Dioxane	-	-	-
CCl ₄	-	-	-
THF	-	-	-
DCM	-	-	-
DMF	-	-	-
DMSO	-	-	-
Formic acid	±	±	±

(±) partially soluble & (-) insoluble

The insolubility of the copolymers prepared in this study can be attributed to the possible formation of copolymer chains with high molecular weights.

3.3 Electrical Conductivity of Copolymers **V – VII** [8]

The electrical properties of the prepared copolymers were evaluated by measuring the current–voltage (I–V) relationship of compressed disc-shaped samples at room temperature. All samples exhibited a linear V–I response, indicating ohmic behavior.

For copolymer **V** (disc radius 7 mm, thickness 3.62 mm), the measured resistance was $2.82 \times 10^9 \Omega$, corresponding to a resistivity of $1.20 \times 10^{10} \Omega \cdot \text{cm}$ and a calculated electrical conductivity of $8.33 \times 10^{-11} \Omega^{-1} \cdot \text{cm}^{-1}$. Copolymer **VI** (radius 7 mm, thickness 3.5 mm) showed a resistance of $2.52 \times 10^9 \Omega$, yielding a resistivity of $1.11 \times 10^{10} \Omega \cdot \text{cm}$ and a conductivity of $9.01 \times 10^{-11} \Omega^{-1} \cdot \text{cm}^{-1}$. Copolymer **VII** (radius 7 mm, thickness 3.02 mm) exhibited a resistance of $4.99 \times 10^9 \Omega$, resulting in a resistivity of $2.54 \times 10^{10} \Omega \cdot \text{cm}$ and a conductivity of $3.94 \times 10^{-11} \Omega^{-1} \cdot \text{cm}^{-1}$. According to standard electrical classifications based on resistivity at room temperature (conductors: $\rho < 10^{-2} \Omega \cdot \text{cm}$; semiconductors: $\rho \approx 10^{-2}–10^6 \Omega \cdot \text{cm}$; weak insulators: $\rho = 10^6–10^8 \Omega \cdot \text{cm}$; insulators: $\rho > 10^8 \Omega \cdot \text{cm}$), all three copolymers **V – VII** exhibit resistivities well above $10^8 \Omega \cdot \text{cm}$ and are therefore classified as electrical insulators. These results indicate that the prepared copolymers are highly resistive polymeric materials, suitable for applications requiring electrical insulation.

3.4 Gel Permeation Chromatography of Copolymers **V – VII**

The GPC analysis provided fundamental insights into the molecular weight distribution of the three random copolymers, which is critical for understanding their subsequent crystallization and mechanical behavior. Copolymer **V** exhibited a moderate molecular weight of 12,000 g/mol with a PDI of 1.50, indicating relatively uniform chain lengths with some degree of polydispersity that allows moderate chain entanglement. Copolymer **VI** displayed the highest molecular weight (40,000 g/mol) and the broadest distribution (PDI = 1.82), meaning a wide variety of chain lengths coexist, which can lead to heterogeneous nucleation and slower overall crystallization. Copolymer **VII** had a high molecular weight (30,000 g/mol) but a narrow distribution (PDI = 1.20), favoring uniform chain packing despite restricted mobility. These differences in molecular weight distribution are expected to directly influence surface morphology, crystallinity, and mechanical performance (Table 2) [9–11].

Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Novel Random Copolymers

Table 2. Molecular Weight Characteristics of Copolymers V – VII

Copoly.	Mw (g/mol)	Mn (g/mol)	Pw (g/mol)	PDI (Mw/Mn)	Classification	Entanglement Regime
V	12,000	8,000	11,000	1.50	Low MW, Moderate PDI	Near-Critical
VI	40,000	22,000	37,000	1.82	High MW, Broad PDI	Highly Entangled
VII	30,000	25,000	28,000	1.20	High MW, Narrow PDI	Well-Entangled

3.5 Surface Morphology of Copolymers V – VII

3.5.1 Scanning Electron Microscope Analysis (SEM)

SEM imaging (Figure 1 - 3) shows copolyester **V** with highly ordered lamellar crystals of 200–500 nm, indicative of low chain entanglement and optimal packing. Copolyester **VI** displays larger crystals (500 nm – 2 μ m) with irregular boundaries and spherulitic patterns due to broad MWD. Copolyester **VII** exhibits an intermediate morphology with smaller, more uniform crystals and higher roughness, reflecting a combination of narrow PDI and high MW, which limits chain mobility during crystal growth [12].

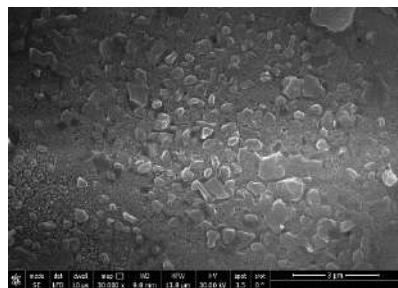


Figure 1. SEM of Copolyester V

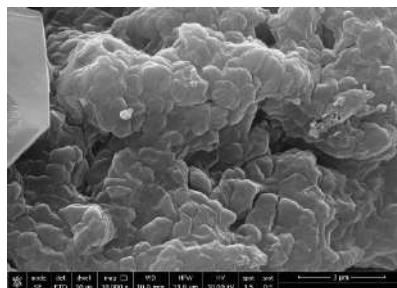


Figure 2. SEM of Copolyester VI

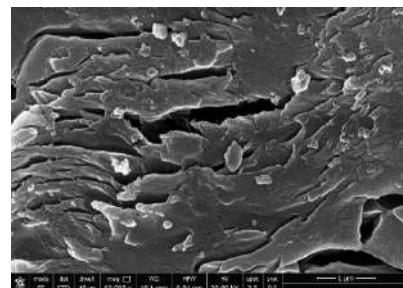


Figure 3. SEM of Copolyester VII

3.5.2 Atomic Force Microscope Analysis (AFM)

Copolyester **V** has smooth lamellae ($S_a = 4.16$ nm, $S_q = 5.60$ nm), copolyester **VI** shows moderate roughness ($S_a = 4.25$ nm, $S_q = 5.43$ nm) due to irregular crystallization, and copolyester **VII** exhibits the highest roughness ($S_a = 5.10$ nm, $S_q = 6.69$ nm), consistent with restricted chain mobility during crystal formation. Kurtosis and skewness analysis further support the differences in surface texture. These results are consistent with earlier studies highlighting the influence of MWD on polymer surface morphology (Figure 4 - 6) [13, 14].

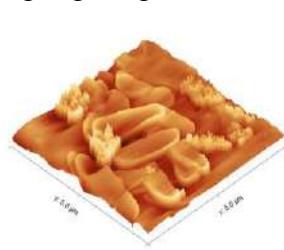


Figure 4. AFM of Copolyester V

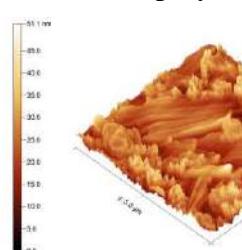


Figure 5. AFM of Copolyester VI

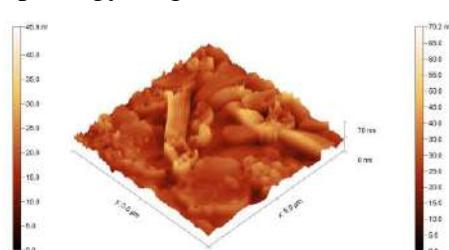


Figure 6. AFM of Copolyester VII

3.6 Surface Wettability

The surface roughness observed in AFM correlates with water contact angle measurements. Copolyester **V**, with smooth lamellae and ordered packing, exhibited the highest hydrophobicity (98.49°). Copolyester **VI**, with irregular and heterogeneous crystals, was more wettable (82.05°), whereas copolyester **VII**, despite higher roughness, displayed an intermediate contact angle (93.76°). These results are consistent with the Cassie-Baxter model, which predicts that increased roughness on a chemically uniform surface can enhance hydrophobicity; however, irregular crystal distribution in copolyester **VI** negates this effect (Figure 7 - 9) [15].

Figure 7. Copolyester V

Figure 8. Copolyester VI

Figure 9. Copolyester VII

3.7 Thermal Properties of Copolymers V – VII

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to evaluate the thermal behavior of the random copolymers **V**–**VII**. The temperature at 10% weight loss was taken as the onset of thermal degradation. Copolyester **VII** exhibited the highest thermal stability, with degradation starting at 366°C , while copolyester **VI** showed the lowest stability at 299°C ; copolyester **V** displayed intermediate behavior (Figure 10 - 12) [16].

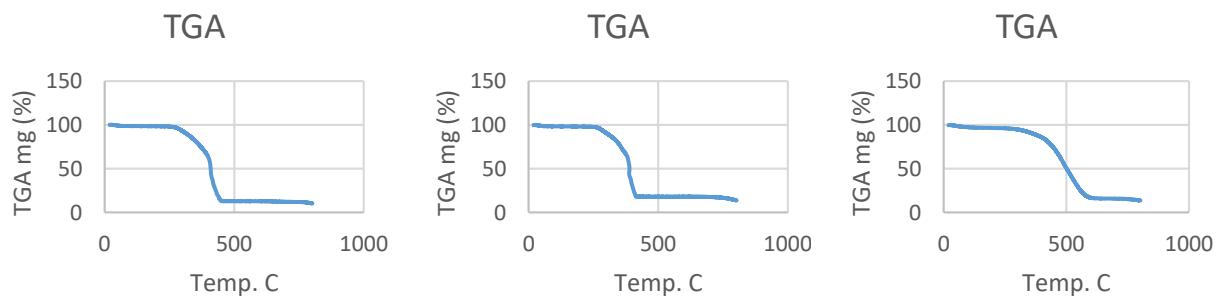


Figure 10. TGA of Copolyester V

Figure 11. TGA of Copolyester VI

Figure 12. TGA of Copolyester VII

Differential scanning calorimetry (DSC) revealed clear differences in melting and crystallization behavior. Copolyester **V** showed a sharp melting peak at 548°C and a moderate degree of crystallinity, reflecting efficient lamellar packing. Copolyester **VI**, despite its higher molecular weight, melted at a lower temperature (521°C) with broader peaks, indicating heterogeneous crystallites due to the broad PDI. Copolyester **VII**, with high MW and narrow PDI, exhibited the highest melting temperature (582°C) and a well-defined crystallization exotherm, highlighting the effect of uniform chain packing and high molecular weight on thermal stability. These observations confirm that a narrow molecular weight distribution can

Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Novel Random Copolymers

enhance thermal performance even at higher polymer chain lengths (Figure 13 - 15) (Table 3) [17, 18].

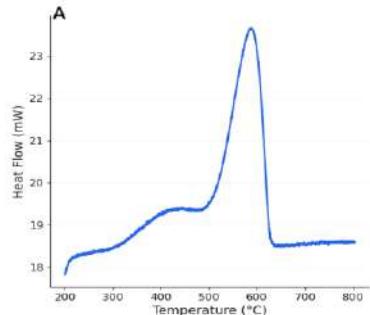


Figure 13. DSC of Copolyester V

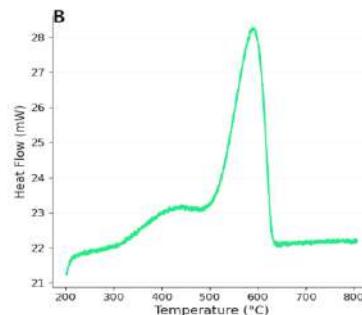


Figure 14. DSC of Copolyester VI

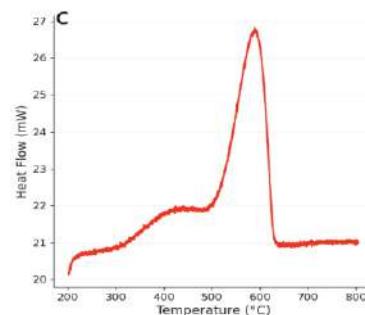


Figure 15. DSC of Copolyester VII

Table 3. Thermal properties of Copolymers V - VII

Copolyester	MW (g/mol)	PDI	Tm (°C)
V	12,000	1.50	548
VI	40,000	1.82	521
VII	30,000	1.20	582

3.8 Dynamic Light Scattering (DLS) and Zeta Potential of copolymers V – VII

DLS measurements indicated that polymer chain size distribution in solution is influenced by both molecular weight and PDI. **VI** showed relatively narrow hydrodynamic size distribution due to aggregation of long chains, while **V** had broader size distribution due to shorter chains and more dynamic conformations. **VII** exhibited intermediate values, reflecting the balance between narrow PDI and high chain entanglement. Zeta potential values ranged from -6.38 mV to -8.1 mV, suggesting moderate colloidal stability, which is critical for applications such as coatings and polymer blends (Table 4, 5) [19].

Table 4. Dynamic Light Scattering Results for Copolymers V – VII

Copolyester	Intensity PDI	Volume PDI	Number PDI	Average PDI
V	0.354	0.35	0.35	0.351
VI	0.15	0.151	0.15	0.150
VII	0.231	0.231	0.231	0.231

Table 5. Zeta Potential Analysis Results for Copolymers V – VII

Copolyester	Zeta Potential (mV)	Electrophoretic Mobility (m ² /Vs)	Conductivity (mS/cm)	pH
V	-8.1	-1.44 × 10 ⁻⁸	0.15	7.2
VI	-6.38	-1.44 × 10 ⁻⁸	0.15	7.2
VII	-7.8	-1.44 × 10 ⁻⁸	0.15	7.2

3.9 Mechanical Properties (Tensile Testing) of Copolymers V – VII

Mechanical characterization revealed the influence of chain distribution on tensile strength and elasticity. Copolyester **V** demonstrated the highest tensile strength (75 MPa) due to the ordered lamellar packing and moderate chain entanglement. Copolyester **VI**, with broad PDI and

heterogeneous crystal formation, showed the lowest tensile strength (71 MPa), confirming that non-uniform crystallization weakens mechanical integrity. Copolyester **VII**, combining narrow PDI and high MW, achieved intermediate tensile strength (72.5 MPa), indicating a compromise between chain mobility restriction and uniform crystallization. These results are consistent with previous studies emphasizing PDI as a more critical determinant than absolute molecular weight for mechanical properties (Table 6) [20].

Table 6. Mechanical properties of Copolymers **V – VII**

Copolyester	Tensile Strength (MPa)	Remarks
V	75	Optimal lamellar packing
VI	71	Heterogeneous crystals
VII	72.5	Balanced properties

3.10 X-Ray Diffraction (XRD) of Copolymers **V – VII**

X-ray diffraction (XRD) analysis provided detailed insight into the crystalline structure of the three random copolymers **V – VII**, complementing the surface morphology and thermal analyses. The XRD patterns revealed a series of characteristic diffraction peaks at $2\theta \approx 15.2^\circ$, 30.4° , 38.6° , 45.8° , 55.2° , 65.4° , and 75.8° , corresponding to the (010), (020), (011), (021), (030), (031), and (040) crystal planes, respectively. These reflections confirm that all copolymers retain the characteristic crystalline structure of polyester-based materials.

A systematic variation in peak sharpness and intensity was observed among the copolymers, reflecting differences in crystallite size, lattice regularity, and molecular weight distribution. Copolyester **V** exhibited sharp and well-defined diffraction peaks, indicating the presence of small, highly ordered crystallites.

This behavior is consistent with SEM and AFM observations showing uniform platelet-like lamellae and supports the relatively high degree of crystallinity inferred from DSC measurements. The sharp diffraction features suggest efficient chain packing enabled by a moderate polydispersity index (PDI), leading to regular crystal lattice formation and contributing to the superior tensile strength of copolyester **V**. In contrast, copolyester **VI** displayed broader and less intense diffraction peaks, particularly at the major reflections around $2\theta \approx 30.4^\circ$ and 45.8° , indicating the formation of larger but more imperfect crystalline domains. This behavior can be attributed to its broad molecular weight distribution, where longer polymer chains tend to form larger crystallites while shorter chains occupy interstitial regions in a less uniform manner. Such structural heterogeneity correlates well with the spherulitic growth patterns observed in SEM and AFM images and explains the slightly reduced thermal stability and mechanical performance compared to copolyester **V**. Copolyester **VII** exhibited intermediate peak sharpness but significantly enhanced peak intensities, consistent with its combination of high molecular weight and narrow PDI. The narrow molecular weight distribution promotes uniform chain packing and ordered crystallization, while the high molecular weight partially restricts chain mobility, limiting the growth of perfectly ordered crystallites. As a result, copolyester **VII** demonstrates a balanced crystalline structure characterized by small, uniform crystallites and higher overall crystallinity. This structural balance is in good agreement with the higher melting temperature observed in DSC analysis and the moderate surface roughness measured by AFM.

Overall, the XRD results demonstrate that molecular weight distribution plays a more dominant role than absolute molecular weight in controlling crystalline order and lattice regularity in

Influence of Molecular Weight Distribution on the Crystallization, Thermal, Surface, and Mechanical Properties of Novel Random Copolymers

random copolymers, directly influencing their thermal and mechanical properties. (Figure 16) [21, 22].

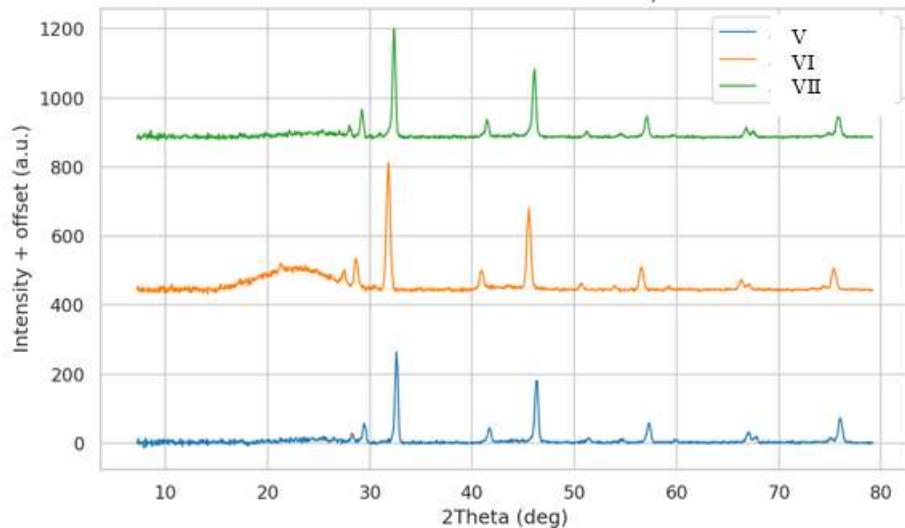


Figure 16. X-ray Diffraction Patterns of Copolymers V – VII

IV. Conclusions

Novel random copolymers **V–VII** were successfully synthesized via interfacial polycondensation and structurally confirmed by FTIR and elemental analysis. The results demonstrate that molecular weight distribution plays a decisive role in controlling the crystallization behavior, surface morphology, thermal stability, mechanical properties, and wettability of the prepared copolymers. Electrical measurements revealed semiconducting behavior at room temperature, while XRD analysis confirmed the presence of crystalline polyester structures with varying degrees of crystallinity. Overall, the combination of tunable structural properties, thermal robustness, and semiconducting characteristics highlights the potential of these copolymers for applications in functional coatings and advanced polymer materials.

V. References:

- [1] Chen, L., Wang, Y. and Zhao, J. Influence of Random Copolymer Structures on Thermal and Mechanical Properties, *Journal of Polymer Science*, **2020**, 58(4), 512–525.
- [2] Zhang, Q., Li, M. and Zhou, X. Effect of Functional Group Distribution on Physical Properties of Random Copolymers, *Polymer Chemistry*, **2019**, 10(12), 1560–1574.
- [3] Kumar, A. and Singh, R. Random Copolymers in Advanced Applications: A Review, *Progress in Polymer Science*, **2021**, 118, 101413.
- [4] Ben Saleh, A. B.; Elsunaki, T. M. and Abd-Alla, M. A. synthesis and Characterization of New Unsaturated Polyesters Based on 4,4-Dihydroxy Dibenzylideneacetone, *Journal of Academic Research*, **2017**, 9, 405–419.
- [5] Preparation and Study of Some Liner Polyesters Based on Divanillylideneacetone Moiety, A. B. Ben Saleh, T. M. Elsunaki and M. A. Abd-Alla, *Science Journal*, **2017**, 7, 28–33.

[6] Kamal, I. A.; Ahmed, S. H.; Shaban, M. R.; and Mona, A. A. New Unsaturated Copolymers Based on Diarylidene Cyclopentanone. Optimum Conditions of Synthesis, Characterization and Morphology, *International Journal of Basic & Applied Sciences IJBAS-IJENS*, **2011**, 11, 14–22.

[7] Odian, G. A.; Imre, K. J. Kinetics and Mechanisms of Polymerization Reactions, *Journal of Polymer Science Part A: Polymer Chemistry* **1980**, 18, 737–751.

[8] Bawa, R. Electric conductivity study of o-substituted phenoxy iron (III) complexes, *Journal of Chemistry and Chemical Engineering*, **2010**, 4, 54–58

[9] Brown, T., Patel, S. and Morgan, K. Molecular Weight Distribution Effects in Polyesters, *Macromolecules*, **2018**, 51(2), 730–742.

[10] Ahmed, M. and Lee, D. Correlation Between PDI and Polymer Crystallization Kinetics, *Polymer Journal*, **2017**, 49(9), 1123–1134.

[11] Silva, R. and Barbosa, L. GPC Analysis of Aromatic Copolymers, *Journal of Applied Polymer Science*, **2016**, 133(45), 441–452.

[12] Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W. M.; Scott, J. H. J.; Joy, D. C. *Scanning Electron Microscopy and X-Ray Microanalysis*, 4th ed.; Springer: New York, **2017**.

[13] Yang, X. and Kim, S. Surface Morphology of Semi-Crystalline Polymers with Different PDIs, *Langmuir*, **2019**, 35(22), 7143–7152.

[14] Patel, V. and Sun, Z. AFM Study of Random Copolyester Surfaces, *Surface Science Reports*, **2020**, 75(5), 101–118.

[15] Lee, H. and Cho, K. Wettability and Roughness in Aromatic Polyesters, *Applied Surface Science*, **2018**, 433, 1204–1212.

[16] Abd-Alla, M. A. and Aly, K. I. Arylidene Polymers XIII—Synthesis, Characterization and Morphology of New Unsaturated Polycarbonates via Phosgenation of Diarylidene Cycloalkanones. *High Perform. Polym.* **1990**, 2(4), 223–234.

[17] Park, Y. and Jeong, D. Thermal Behavior of Polyesters with Controlled PDI, *Thermochimica Acta*, **2016**, 642, 1–10.

[18] Ghosh, P. DSC Analysis of Random Aromatic Polyester Blends, *Journal of Thermal Analysis and Calorimetry*, **2017**, 128(3), 1553–1565.

[19] Mahmoud, A. and Hassan, R. DLS and Colloidal Stability of Aromatic Copolymers, *Colloid and Polymer Science*, **2019**, 297, 135–148.

[20] Fischer, J. and Müller, R. Mechanical Behavior of Polyesters with Variable Molecular Weight Distribution, *Polymer Testing*, **2018**, 67, 122–132.

[21] Wang, F. and Xu, L. XRD Investigation of Polyester Crystallinity, *Crystalline Materials*, **2020**, 12, 88–101.

[22] Tanaka, S. and Mori, Y. Effect of PDI on Crystal Structure in Aromatic Copolymers, *Journal of Materials Chemistry, A* **2019**, 7, 5560–5570.

تأثير توزيع الوزن الجزيئي على خصائص التبلور، الحرارية، السطحية والميكانيكية لكوبولي إسترات أروماتية عشوائية معتمدة على ثاني بنزيليدين الأسيتون

عفاف ش. خضر، فاطمة ع. الزنزي، طارق م. الصنكي، علي م. الهلبي

t.elsunaki@sci.misuratau.edu.ly

الملخص

تكشف دراسة متعددة التقنيات للكوبولي إسترات VII-VII أن توزيع الوزن الجزيئي (مؤشر التعديبة، PDI) يتحكم في خصائص البوليمر بدرجة أعلى من الوزن الجزيئي المطلق. إذ تعزز التوزيعات الضيقية تبلوراً متجانساً، مما يؤدي إلى تحسين الاستقرار الحراري، والمتانة الميكانيكية، والتنظيم السطحي، وخصائص الواجهات البنية، في حين تؤدي التوزيعات الواسعة إلى بنى غير متجانسة وانخفاض في الاتساق. وقد حقق الكوبولي إستر VII ، ذو الوزن الجزيئي المتوسط (30,000 جم·مول⁻¹) ومؤشر تعديبة ضيق (1.20)، أفضل استقرار حراري ($T_m = 582^{\circ}\text{م}$) ، ودرجة تبلور مرتفعة (93.76%) مع حجم بلوري قدره 45.2 نانومتر)، وخصائص كارهة للماء (زاوية تلامس 93.76°)، وقوه شد عالية (72.5 ميغاباسكال)، مما يبرز ميزة التحكم في توزيع الوزن الجزيئي مقارنة بمجرد تكبير الوزن الجزيئي. توضح الكوبولي إسترات V و VI كيف يمكن للوزن الجزيئي المتوسط أو التوزيعات الواسعة أن تستخدم، على التوالي، لتنصيف الخصائص السطحية أو خصائص المعالجة. وبين التحليل الآلي أن تجانس التوزيع هو العامل الحاكم لحركة التبلور والنظام البنوي، مما يوفر علاقات تنبؤية بين البنية والخاصية. وتتيح هذه الرؤى اختياراً رشيداً للمواد للتطبيقات عالية الأداء، أو الحساسة للسطح، أو كثافة المعالجة، مع تقليل تعقيد التخلق واستهلاك الموارد والاثر البيئي. وتوسّس هذه الدراسة توزيع الوزن الجزيئي بوصفه معالماً رئيسياً في تصميم مواد بوليمرية مستدامة من الجيل القادم.