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 Abstract Article information 

 In this paper, in order to simplify the understanding of the Kalman 

filter and its applications in practice, the optimization of Kalman filter 

is done empirically, and compared with the Luenberger observer.  

Therefore, a series of experiments are done for the range of current 

and delayed Kalman filter innovation gains with specific process 

dynamic and stochastic parameters. Also, for the sake of comparison, 

the same is applied on the observer as well. Where, the stochastic 

process parameters are the stochastic disturbance or the modeling 

error covariance (Q), and the measurement error covariance (R).  

Consequently, the tests of the current Kalman filter showed that the 

empirically measured optimal Kalman innovation gains are identical to 

the computations of the Kalman filter algorithms.  On the other hand, 

the tests for the delayed version showed that empirical optimal 

innovation gains slightly diverge from computations of the algorithms.   
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I. Introduction 

The optimal estimation problem is inherently linked to the method of least squares, which is 

historically known to go back to the time of Carl Friedrich Gauss publication in 1809, then 

over the Wiener–Kolmogorov filter, where it is based on frequency response spectrum 

analysis around 1940 and through the discrete time Kalman filter in 1960 [1], which has led to 

its implementation in digital computers, and even further to continuous time Kalman-Bucy 

filter 1961 [2]. For more intensive study of the subject [3], [4], [5] and [6] are suggested.  

Also the Maybeck series of stochastic models, estimation, and control [7], [8], and [9] are 

recommended as well as Sorenson [10] for more applications. 

Since then until today, there are an immense number of publications about Kalman filter 

implementation in various industrial applications, for example, [11] uses Kalman filter in 

estimation of the electrical parameters of power transmission lines, while [12] is in 

optimization for unscented Kalman filter of an embedded platform.  Moreover, the work in 

[13] presents an efficient tuning framework for Kalman filter parameter optimization. 

Now, the target of this paper is to measure the performance of Kalman filter empirically, as 

done by Alsogkier in [14] and [15], where an intensive empirical optimization of a 

Luenberger state observer [16] has been done. 
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The problem formulation of this paper is to execute a series of experiments with different 

parameters and conditions to estimate the states of a stochastic process by using the Kalman 

filter as well as the state observer, and then the Sum of Squared Error (SSE) is computed 

between the true real state of the process and the estimated state for every single experiment.  

Note that this type of error is only attainable in digital simulation environments and relatively 

impossible to acquire in real experiments. In other words, to measure the performance of the 

estimator the true state value has to be known in order to compute the estimation error.  The 

SSE is used as a performance index to assess the estimations and to measure the optimal 

estimator performance empirically. 

In the following, a brief introduction is given to Kalman filter algorithms in section II, then, 

section III is about the relationship between the Kalman filter and the state observer. After 

that, the empirical optimizations of the Kalman filter and the sate observer are presented in 

section IV.  Finally, some conclusions are presented in section V, and the list of references is 

given at the end. 

II. Kalman Filter Algorithm 

The Kalman filter is a sort of a discrete observer that can be used to estimate state(s) from 

measurements of a stochastically disturbed process.  It is a general stochastic measurement 

problem that can be applied in practice to filter noisy sensor measurements of stochastic 

process states.  The real stochastic process, which is to be measured (observed), is defined as 

 𝑥(𝑛 + 1) = 𝑎𝑥(𝑛) + 𝑏[𝑢(𝑛) + 𝑤(𝑛)], (1a) 

𝑦(𝑛) = 𝑐𝑥(𝑛) + 𝑣(𝑛), (1b) 

where w and v are normally distributed independent stochastic variables with variances Q and 

R respectively, and a, b & c are the process parameters, 𝑢, 𝑥, 𝑦 are the process known input, 

the state and the measured output respectively.  The time evolutions of the Kalman filter state 

estimation (prediction) are shown in figure 1. 

 

 
Figure 1: The Kalman filter discrete time evolution 

First, the estimation algorithm starts with an initial guess x̂(0) and its variance P(0), the 

Kalman filter has mainly two phases, time update phase where a prediction is made based on 

the past data, as well as, the measurement update phase, when a new measurement sample 

becomes available and used to correct the estimated prediction of time update, that is why, it 

𝑛 𝑛 − 1 𝑛 + 1 𝑛 − 𝑛 + 

𝑝𝑟𝑒𝑖𝑜𝑟𝑖 𝑠𝑡𝑎𝑡𝑒 
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑥(𝑛)

−  
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖 𝑠𝑡𝑎𝑡𝑒 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑥(𝑛)
+  

𝑥(𝑛−1\𝑛−1) 𝑥(𝑛\𝑛−1) 

𝑦(𝑛−1)  𝑦(𝑛) 𝑦(𝑛+1) 

𝑝𝑎𝑠𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑓𝑢𝑡𝑢𝑟𝑒 

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 
𝑢𝑝𝑑𝑎𝑡𝑒𝑠 

𝑥(𝑛\𝑛) 𝑥(𝑛+1\𝑛) 𝑥(𝑛+1\𝑛+1) 

𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
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is called state estimate correction alternatively.  The Kalman algorithm can start either by time 

update first, format A [4], or by measurement update first format B [5], both formats are used 

and get the same result. 

The time update phase is a prediction of prior state estimate based on the previous prediction 

of the state on the past before the time = n comes.  This is described sometimes by n-, and for 

a simple first order system is defined by 

𝑥̂(𝑛\𝑛 − 1) = 𝑎𝑥̂(𝑛 − 1\𝑛 − 1) + 𝑏𝑢(𝑛 − 1), (2) 

and its variance propagation equation 

𝑃(𝑛\𝑛 − 1) = 𝑎𝑃(𝑛 − 1\𝑛 − 1)𝑎 + 𝑏𝑄𝑏. (3) 

Then at time n, the current time, a new measurement sample comes and used to update 

(correct) the previous (prior) state estimate or prediction, which is usually called measurement 

update or estimate correction, as following 

𝑥̂(𝑛\𝑛) = 𝑥̂(𝑛\𝑛 − 1) + 𝐾𝑛[𝑦(𝑛) − 𝑐𝑥̂(𝑛\𝑛 − 1)], (4) 

where Kn is the innovation gain and its value ranges between 0 to 1, it is a weighting factor 

that balances the posterior state prediction between the priori estimation and the (new) current 

measurement update.  The variance of the last estimate is given by 

𝑃(𝑛\𝑛) = 𝐾𝑛𝑅𝐾𝑛 + [1 − 𝐾𝑛𝑐]𝑃(𝑛\𝑛 − 1)[1 − 𝐾𝑛𝑐]. (5) 

Now the Kalman gain is chosen to minimize the variance of the last estimate, therefore, the 

derivative of the last equation is taken and put equal to zero by putting  
𝑑𝑃(𝑛\𝑛)

𝑑𝐾𝑛
= 0, as well as 

 
𝑑𝑃(𝑛\𝑛−1)

𝑑𝐾𝑛
= 0 yields 

0 = 2𝐾𝑛𝑅 − 2[1 − 𝐾𝑛𝑐]𝑃(𝑛\𝑛 − 1)𝑐, 

and after some mathematical manipulations, the optimal innovation gain, also called the 

Kalman gain, becomes  

𝐾𝑛 =
𝑃(𝑛\𝑛 − 1)𝑐

𝑐𝑃(𝑛\𝑛 − 1)𝑐 + 𝑅
   , (6) 

with some precomputations, this result is put back again into the variance equation, which 

results 

𝑃(𝑛\𝑛) =
𝑐𝑃(𝑛\𝑛 − 1)𝑅𝑃(𝑛\𝑛 − 1)𝑐

[𝑐𝑃(𝑛\𝑛 − 1)𝑐 + 𝑅]2
+

𝑅𝑃(𝑛\𝑛 − 1)𝑅

[𝑐𝑃(𝑛\𝑛 − 1)𝑐 + 𝑅]2
 

 

So, after manipulations and substitutions, the variance update becomes 

𝑃(𝑛\𝑛) = (1 − 𝐾𝑛𝑐)𝑃(𝑛\𝑛 − 1). (7) 

The current Kalman filter state is defined as following 
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𝑥̂(𝑛\𝑛) = 𝑥̂(𝑛\𝑛 − 1) + 𝐾𝑛[𝑦(𝑛) − 𝑐𝑥̂(𝑛\𝑛 − 1)] (8a) 

or 

𝑥̂(𝑛\𝑛) = [1 − 𝐾𝑛𝑐]𝑥̂(𝑛\𝑛 − 1) + 𝐾𝑛𝑦(𝑛), 

and the estimator output without delay is defined as following 

𝑦̂(𝑛\𝑛) = 𝑐𝑥̂(𝑛\𝑛) = 𝑐[1 − 𝐾𝑛𝑐]𝑥̂(𝑛\𝑛 − 1) + 𝑐𝐾𝑛𝑦(𝑛). (8b) 

While, the delayed output is defined as 

𝑦̂(𝑛\𝑛 − 1) = 𝑐𝑥̂(𝑛\𝑛 − 1). (9) 

 

The following figure 2 depicts the block diagram of Kalman filter format A algorithm, while 

table 1 presents the Kalman filter algorithm phases of format A and their recursive equations.  

Moreover, table 2 presents more detailed steps of Kalman filter format A procedure, where it 

starts with initial state estimate 𝑥̂(0), and its variance 𝑃(0), while 𝑢(𝑛) is known through all 

the time [4]. 

 

 

Figure 2: Block diagram of Kalman filter format A algorithm. 

 

Table 1: Kalman filter format A algorithm Phases and their recursive equations. 

Time update (at n-) state estimation 

Before the new sample comes 

Measurement update (at n) estimate correction 

After the new sample [ 𝑦(𝑛)] has come 
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Initial state estimate 𝑥̂(0), and its variance 𝑃(0). 𝐾𝑛 = 𝑃(𝑛\𝑛 − 1)𝑐/(𝑐𝑃(𝑛\𝑛 − 1)𝑐 + 𝑅) 

𝑥̂(𝑛\𝑛 − 1) = 𝑎𝑥̂(𝑛 − 1\𝑛 − 1) + 𝑏𝑢(𝑛 − 1) 𝑥̂(𝑛\𝑛) = 𝑥̂(𝑛\𝑛 − 1) + 𝐾𝑛[𝑦(𝑛) − 𝑐𝑥̂(𝑛\𝑛 − 1)] 

𝑃(𝑛\𝑛 − 1) = 𝑎𝑃(𝑛 − 1\𝑛 − 1)𝑎 + 𝑏𝑄𝑏 𝑃(𝑛\𝑛) = (1 − 𝐾𝑛𝑐)𝑃(𝑛\𝑛 − 1) 

Wait for the next sample! Store and Loop! 

 

Table 2: Detailed steps of Kalman filter format A procedure. 

n, steps Command Comment 

0 0 𝑥̂(0), 𝑃(0) Initial Conditions 

0 1 𝑥̂(𝑛 + 1\𝑛) = 𝑎𝑥̂(𝑛\𝑛) + 𝑏𝑢(𝑛) Make prediction for the next sample time 

0 2 𝑃(𝑛 + 1\𝑛) = 𝑎𝑃(𝑛\𝑛)𝑎 + 𝑏𝑄𝑏 Update prediction variance 

0 3 𝐾𝑛+1 = 𝑃(𝑛 + 1\𝑛)𝑐/[𝑐𝑃(𝑛 + 1\𝑛)𝑐 + 𝑅] Calculate the next sample correction gain 

0 4 𝑥̂(𝑛\𝑛 − 1) = 𝑥̂(𝑛 + 1\𝑛); 𝑃(𝑛\𝑛 − 1) = 𝑃(𝑛 + 1\𝑛); 𝐾𝑛 = 𝐾𝑛+1 [𝑧−1]  Store for the next sample 

0 5 Wait for the next sample time to come  

1 0 Read: y(n), and u(n) New sample hit 

1 1 𝑥̂(𝑛\𝑛) = 𝑥̂(𝑛\𝑛 − 1) + 𝐾𝑛[𝑦(𝑛) − 𝑐𝑥̂(𝑛\𝑛 − 1)] Previous estimation correction 

1 2 𝑃(𝑛\𝑛) = (1 − 𝐾𝑛𝑐)𝑃(𝑛\𝑛 − 1) Variance of estimation correction 

1 3 GOTO: 01 Loop! 

 

On the other hand, Table 3 presents the Kalman filter algorithm phases of format B and their 

recursive equations, while figure 3 depicts the block diagram of Kalman filter format B 

algorithm.  Moreover, table 4 presents more detailed steps of Kalman filter format B 

procedure, where it starts with initial state estimate 𝑥̂(0), and its variance 𝑃(0), while 𝑢(𝑛) is 

known through all the time [5]. 

Table 3: Kalman filter format B algorithm Phases and their recursive equations. 

Starting with initial state estimate 𝑥̂(0), and its variance 𝑃(0), u(0), y(0). 

Measurement update (at n) estimate correction  

after the new sample has come 

Time update (at n+) state estimation prediction 

for the next sample 

𝐾𝑛 = 𝑃(𝑛\𝑛 − 1)𝑐/(𝑐𝑃(𝑛\𝑛 − 1)𝑐 + 𝑅) 𝑥̂(𝑛 + 1\𝑛) = 𝑎𝑥̂(𝑛\𝑛) + 𝑏𝑢(𝑛) 

𝑥̂(𝑛\𝑛) = 𝑥̂(𝑛\𝑛 − 1) + 𝐾𝑛[𝑦(𝑛) − 𝑐𝑥̂(𝑛\𝑛 − 1)] 𝑃(𝑛 + 1\𝑛) = 𝑎𝑃(𝑛\𝑛)𝑎 + 𝑏𝑄𝑏 

𝑃(𝑛\𝑛) = (1 − 𝐾𝑛𝑐)𝑃(𝑛\𝑛 − 1) Store and go to the next measurement 
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Figure 3: Block diagram of Kalman filter format B algorithm. 

Table 4: Detailed steps of Kalman filter format B procedure. 

n, steps Command Comment 

0 0 𝑥̂(0), 𝑃(0) , y(0), u(0) Initial Conditions 

0 1 𝐾𝑛 = 𝑃(𝑛\𝑛 − 1)𝑐/(𝑐𝑃(𝑛\𝑛 − 1)𝑐 + 𝑅) Calculate the correction gain 

0 2 𝑥̂(𝑛\𝑛) = 𝑥̂(𝑛\𝑛 − 1) + 𝐾𝑛[𝑦(𝑛) − 𝑐𝑥̂(𝑛\𝑛 − 1)] Previous estimation correction with new sample 

0 3 𝑃(𝑛\𝑛) = (1 − 𝐾𝑛𝑐)𝑃(𝑛\𝑛 − 1) Correction variance 

0 4 𝑥̂(𝑛 + 1\𝑛) = 𝑎𝑥̂(𝑛\𝑛) + 𝑏𝑢(𝑛) Make prediction for the next sample time 

0 5 𝑃(𝑛 + 1\𝑛) = 𝑎𝑃(𝑛\𝑛)𝑎 + 𝑏𝑄𝑏 next sample prediction variance 

0 6 𝑥̂(𝑛\𝑛 − 1) ⟸ 𝑥̂(𝑛 + 1\𝑛); 𝑃(𝑛\𝑛 − 1) ⟸ 𝑃(𝑛 + 1\𝑛) [𝑧−1]  Store for the next sample 

0 7 Wait for the next sample time to come  

1 0 Read: y(n), and u(n) New sample hit 

1 1 GOTO: 0,1 Loop! 

III. Relationship between Kalman and the State Observer 

A. Reformation of Kalman filter format A to an observer: 

Combine the time update equation (2) with the measurement update equation (4) as well as 

current output with past real state equation (1) as following 
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𝑥̂(𝑛\𝑛) = 𝑎𝑥̂(𝑛 − 1\𝑛 − 1) + 𝑏𝑢(𝑛 − 1) 

+𝐾𝑛𝑐[𝑎𝑥(𝑛 − 1) + 𝑏𝑢(𝑛 − 1) 

−𝑎𝑥̂(𝑛 − 1\𝑛 − 1) − 𝑏𝑢(𝑛 − 1)]. 

Dropping the conditional probability slash 

𝑥̂(𝑛) = 𝑎𝑥̂(𝑛 − 1) + 𝑏𝑢(𝑛 − 1) 

+𝐾𝑛𝑐[𝑎𝑥(𝑛 − 1) + 𝑏𝑢(𝑛 − 1) − 𝑎𝑥̂(𝑛 − 1) − 𝑏𝑢(𝑛 − 1)], 

which yields 

𝑥̂(𝑛) = 𝑎𝑥̂(𝑛 − 1) + 𝑏𝑢(𝑛 − 1) 

                         +𝐾𝑛𝑐𝑎[𝑥(𝑛 − 1) − 𝑥̂(𝑛 − 1)], 

advance one step ahead for both sides, yields Kalman filter reformed like an observer: 

𝑥̂(𝑛 + 1) = 𝑎𝑥̂(𝑛) + 𝑏𝑢(𝑛) + 𝐾𝑛𝑐𝑎[𝑥(𝑛) − 𝑥̂(𝑛)] (10) 

By comparing to the observer standard equation 

 

𝑥̂𝑜(𝑛 + 1) = 𝑎𝑥̂𝑜(𝑛) + 𝑏𝑢(𝑛) + 𝐾𝑜𝑐[𝑥(𝑛) − 𝑥̂𝑜(𝑛)], (11) 

where 𝑥̂𝑜 is estimated state and the observer gain is defined by 

𝐾𝑜 = 𝐾𝑛𝑎 , 

or by using the outputs instead of the states in equation (11) 

𝑥̂𝑜(𝑛 + 1) = 𝑎𝑥̂𝑜(𝑛) + 𝑏𝑢(𝑛) + 𝐾𝑜[𝑦(𝑛) − 𝑦̂𝑜(𝑛)] 

𝑦̂𝑜(𝑛) = 𝑐𝑥̂𝑜(𝑛) 
(12) 

also 

𝑥̂𝑜(𝑛 + 1) = [𝑎 − 𝐾𝑜𝑐] 𝑥̂𝑜(𝑛) + 𝑏 𝑢(𝑛) + 𝐾𝑜 𝑦(𝑛). 

B. Reformation of Kalman filter format B to an observer: 

Starting by substitution of the measurement update equation (4) into the time update equation 

(2), yields 

𝑥̂(𝑛 + 1\𝑛) = 𝑎𝑥̂(𝑛\𝑛 − 1) + 𝑎𝐾𝑛[𝑦(𝑛) − 𝑐𝑥̂(𝑛\𝑛 − 1)] + 𝑏𝑢(𝑛) 

or 

𝑥̂(𝑛 + 1\𝑛) = 𝑎𝑥̂(𝑛\𝑛 − 1) + 𝑏𝑢(𝑛) + 𝑎𝐾𝑛[𝑦(𝑛) − 𝑦̂(𝑛\𝑛 − 1)]. 

By dropping the conditional probability slash, then the Kalman filter reformed like an 

observer becomes 

𝑥̂(𝑛 + 1) = 𝑎𝑥̂(𝑛) + 𝑏𝑢(𝑛) + 𝑎𝐾𝑛[𝑦(𝑛) − 𝑦̂(𝑛)], 

which is like the observer equation (10) of format A. 
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IV. Empirical Optimization Tests for the Kalman Filter and the Observer 

A. Experimental Setup 

In this section, in order to measure the optimal performance of the Kalman filter empirically, 

a series of experimental tests are done for a range of Kalman innovation gain values with 

different system parameters and conditions.  Where the performance measure is defined by 

the sum of squared (true) error between the true state and the estimated one, and computed for 

every single test run that corresponds to the Kalman gain, as following 

𝐽(𝐾𝑀𝐴𝑁) = ∑ 𝑒𝑡𝑟𝑢𝑒
2 (𝑛)

𝑁

𝑛=0

, 

where,  𝐾𝑀𝐴𝑁 is a value of Kalman innovation gain (𝐾𝑛) which is set constant for every single 

experimental run,  𝑁 is the number of samples and 𝑒𝑡𝑟𝑢𝑒 is the error between the true and the 

estimated states. 

 Then, for a series of tests, the performance measure is plotted against their corresponding 

gains (𝐾𝑀𝐴𝑁) and then the optimal gain is visually found out from the plotted curve, which 

corresponds to minimal value of the SSE. 

The first series of tests are conducted on the current Kalman filter to measure the Kalman 

optimal innovation gain empirically.  Figure 4, presents the performance measure curves for a 

set of different parameters and conditions as presented in table 5.  While in the second series 

of tests, the same set of the parameters and conditions as in the first case are repeated to 

optimize the current (un delayed) observer gain empirically.  Also, Figure 5 presents the 

performance measure curves for the current observer.  

Again, the first series is redone again for the delayed Kalman filter, its curves are presented in 

figure 6.  While the second series is also redone again for the case of the delayed observer as 

well, its empirical optimization curves are presented in figure 7. 

 

At the end all of the empirically measured optimal gains, for all cases and series are 

summarized and presented in table 5. 
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Figure 4.  Empirical optimization for current Kalman filter. 
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Figure 5.  Empirical optimization for current observer. 
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Table 5: System parameters, computed gains and empirically measured optimal gains. 
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Figure 6.   Empirical optimization for delayed Kalman filter. 
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Figure 7.   Empirical optimization for delayed observer. 
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SSE 
system parameters computed 

current 

empirical 

delayed 

empirical 

a b c d Q R MANK OK MANK OK MANK OK 

1J 0.5 1 1 0 0.2 0.2 0.53311 0.2656 0.52 0.26 0.49 0.25 

2J 0.5 1 1 0 0.1 0.1 0.53311 0.2656 0.52 0.26 0.49 0.25 

3J 0.5 1 1 0 0.1 0.05 0.6847 0.3423 0.68 0.34 0.635 0.325 

4J 0.5 1 1 0 0.1 0.01 0.9109 0.4555 0.91 0.455 0.84 0.425 

5J 0.5 1 1 0 0.05 0.1 0.3723 0.1861 0.36 0.18 0.34 0.175 

6J 0.5 1 1 0 0.01 0.1 0.1138 0.0569 0.1 0.05 0.105 0.05 

7J 0.9 1 1 0 0.1 0.1 0.5974 0.5377 0.58 0.52 0.55 0.5 

B. Results Discussion 

From the table 5 and figure 4, J1 and J2 have the same parameters and Q/R ratio, but only the 

variance is different.  Nevertheless, the optimal gains, computed and empirical, are identical 

since the Q/R ratio is equal.  By comparing J2 and J3, in J3 the measurement variance is less 

than in case of J2, therefore, the information in the measurement is more important than in the 

model, therefore it is weighted more by higher innovation and observer gains.  In the J4 case, 

the measurement variance becomes much less than in the J3 case, therefore, the gains are 

greater than in J3 and J2.  J5 and J6 cases are exactly opposite to J3 and J4, where the variance 

of the model is less than the measurement variance, therefore, the correction gains in J5 are 

smaller than in J2 and J3.  Furthermore, in J6 the gains are even smaller than in the case of J5, 

since the variance ratio Q/R is less than in all other cases.  In the last case J7 shows the impact 

of the system dynamics of the gains in comparison to J2 case.    

In addition, for the case of J2 parameters, the time responses of the measured, true and 

estimated outputs are plotted for a different Kalman innovation gain values, in figure 8 is 

equal to 0.1, figure 9 equal to the optimal and figure 10 equal to 0.9.  Moreover, the true error 

between the true and estimated outputs and the measured error between the measured and the 

estimated outputs are also plotted.  In figure 8 the innovation gain is very small that the 

estimation depends more on the model, this is why the estimation looks like less noisy, while 

in figure 10 the gain is almost one, here the estimation depends heavily on the measurements 

and this is the cause why the measured error is very small, but in figure 9 the sum of squared 

true error is at minimum, see also curve J2 in figure 4.  

It is clear, that the empirical measurement of Kalman filter optimal gains, the innovation as 

well as the observer gains have matched the computed optimal gains particularly in the 

current Kalman filter algorithm or in the un delayed observer form.  Nevertheless, on the 

other hand, the delayed version of Kalman filter form, the empirical optimal measurements of 

the Kalman innovation gain as well as the observer gain show slight deviations in comparison 

to the current computed one, see figures 6 and 7.  The current (un delayed) Kalman filter and 

observer functions are identical and they perform better than the delayed versions, but in 

practice, these are unrealizable (very difficult, almost impossible) particularly in real time 

control applications. 
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Figure 8.  Outputs and errors for Kalman gain equal to 0.1. 
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Figure 9.  Outputs and errors for the optimal Kalman gain (0.53311). 
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Figure 10.  Outputs and errors for Kalman gain equal to 0.9. 
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V. CONCLUSIONS 

Both Kalman filter formats A and B are identical.  Also, the current Kalman filter algorithms 

can be combined to work exactly as a state observer.   

The empirical optimization tests of the current Kalman filter, in all of its formats, showed that 

the empirically measured optimal Kalman innovation gains are identical to the computations 

of the Kalman filter algorithms.  

On the other hand, the empirical optimization tests for the delayed Kalman filter version, for 

all formats, showed that the empirically measured optimal Kalman innovation gains slightly 

diverge from the optimal computations of Kalman filter algorithms.   

Therefore, it can be stated, that the delayed Kalman filter version is a suboptimal version of 

the current Kalman filter algorithms.  This means, for the delayed version, it has to be 

redesigned to be optimal.  The delayed version can be easily implemented in real time 

applications on the contrary to the current version, which is impossible to realize in real time 

applications. 

The optimal design of Kalman filter does not depend on the absolute values of modeling 

uncertainty or disturbance variance and the measurement error variance but rather on the ratio 

between them.  This is a practical advantage since the tuning of the filter can be reduced down 

to one parameter instead of two, particularly, for example, when modelling uncertainty or the 

disturbance is unknown, while the measurement variance is known. 
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